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Abstract

The Boolean satisfiability (SAT) problem, deciding whether a formula in Boolean
logic has a satisfying assignment, has become a fundamental problem in computer
science and automated reasoning. Despite the absence of any known polynomial-
time algorithm, SAT solving tools have become highly effective in practice, ca-
pable of handling large-scale instances from industrial applications. While the
success of modern SAT solvers can be attributed to several factors, notable recent
progress has been made by exploring the use of redundant clauses: disjunctions
of literals that can be added to, or removed from, a formula while preserving
satisfiability, though not necessarily logical equivalence. Current techniques uti-
lizing redundant clauses, such as powerful proof systems and clause elimination
procedures, show the potential of redundancy-based methods for SAT solving,
but are not easily compatible with important solving procedures. This thesis
explores limitations of current redundancy-based methods and presents novel
approaches to redundancy-based reasoning in SAT.

We examine an important class of redundant clauses called covered clauses,
which generalize multiple redundancy properties used by SAT solvers for clause
elimination. Such formula simplification methods are demonstrably beneficial for
solving large SAT instances from various application areas, though they may alter
a formula’s solution set, requiring a separate solution reconstruction process.
Procedures based on covered clauses use a reconstruction process that is more
complex and burdensome than similar procedures. We prove that for covered
clauses, the partial assignments known as witnesses used by the typical solution
reconstruction process can be as difficult to produce as solving the formula itself.
We also show that covered clauses are not captured by the property used by the
powerful propagation redundancy (PR) proof system. Furthermore, we develop
a more flexible and general structure for witnesses to allow for efficient solution
reconstruction for covered clauses as well.

This thesis also develops methods for reasoning about redundant but non-
clausal Boolean constraints. Strong proof systems for certifying SAT solvers’
results, and increasing trust in SAT technology, are based on the iterative ad-
dition of redundant clauses to a formula, but can struggle to express solving
techniques that are not naturally in clause form. In particular, reasoning over
“exclusive-or” (XOR) constraints embedded in a formula can afford tremendous
gains in efficiency, but complicates the production of proofs, typically causing
solvers to disable XOR reasoning when proofs are required. We generalize the no-
tion of redundancy for clauses to redundancy for Boolean functions, retaining the
strengths of clausal proof systems while expressing non-clausal reasoning. We use
binary decision diagrams to represent redundant Boolean functions, producing
proofs that capture XOR reasoning in a natural way. To show the effectiveness of
this approach in practice, we present the results of a preliminary implementation
of a proof checking tool which uses this method.



Kurzfassung

Das Erfüllbarkeitsproblem der Aussagenlogik (SAT) ist ein grundlegendes Pro-
blem der Informatik und des automatisierten Schließens. Die Kernaufgabe dabei
ist zu bestimmen, ob es für eine gegebene aussagenlogische Formel eine erfüllen-
de Belegung gibt. Trotz des Fehlens eines bekannten Polynomialzeit-Algorithmus
haben sich Programme zur Lösung von SAT in der Praxis als sehr effektiv er-
wiesen und können große Formeln aus industriellen Anwendungen bewältigen.
Während der Erfolg moderner SAT-Solver auf mehrere Faktoren zurückzuführen
ist, wurden in letzter Zeit bemerkenswerte Fortschritte durch die Erforschung
redundanter Klauseln erzielt. Solche Klauseln sind Disjunktionen von Literalen,
die zu einer Formel hinzugefügt oder aus ihr entfernt werden können, ohne dass
sich die Erfüllbarkeit, wenn auch nicht unbedingt die logische Äquivalenz, än-
dert. Aktuelle Techniken, die redundante Klauseln verwenden, wie z. B. starke
Beweissysteme und Verfahren zur Vereinfachung von Formeln, zeigen das Poten-
zial von Redundanzmethoden für das SAT-Solving, sind aber nicht mit wichti-
gen Lösungsverfahren kompatibel. Diese Arbeit untersucht die Grenzen aktueller
Redundanzmethoden und stellt neue Ansätze für redundanzbasiertes Schließen
in SAT vor.

Wir untersuchen eine wichtige Klasse von redundanten Klauseln, die so ge-
nannten Covered Clauses, die mehrere Redundanzeigenschaften verallgemeinern,
die von SAT-Solvern zur Klauseleliminierung verwendet werden. Solche Vereinfa-
chungsmethoden sind nachweislich vorteilhaft für das Lösen großer SAT-Formeln
aus verschiedenen Anwendungsbereichen, aber können die Modellmenge einer
Formel verändern und erfordern deshalb einen Prozess zur Modellrekonstrukti-
on. Verfahren für Covered Clauses verwenden einen Rekonstruktionsprozess, der
komplexer und aufwändiger ist als ähnliche Verfahren. Wir beweisen, dass für
Covered Clauses die Teilbelegungen, die als Zeugen bekannt sind und vom typi-
schen Rekonstruktionsprozess verwendet werden, genauso schwierig zu erzeugen
sein können wie die Lösung der Formel selbst. Wir zeigen auch, dass Covered
Clauses nicht durch Propagationsredundanz (PR), eine der stärksten Redundan-
zeigenschaften, subsumiert wird. Darüber hinaus entwickeln wir eine flexiblere,
allgemeine Struktur für Zeugen, um eine effiziente Modellrekonstruktion auch für
Covered Clauses zu ermöglichen.

Weiterhin werden in dieser Arbeit Methoden für redundante, allgemeine aus-
sagenlogische Constraints entwickelt. Starke Beweissysteme zur Zertifizierung
der Ergebnisse von SAT-Solvern und zur Erhöhung des Vertrauens in die SAT-
Technologie basieren aus dem iterativen Hinzufügen redundanter Klauseln zu
einer Formel, haben aber Schwierigkeiten, Lösungstechniken auszudrücken, die
nicht in Klauselform vorliegen. Insbesondere das Schließen über die in einer For-
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mel eingebetteten „Exklusiv-Oder“ (XOR) Constraints kann enorme Effizienzge-
winne ermöglichen, erschwert aber die Erstellung von Beweisen, so dass SAT-
Solvern XOR-Techniken in der Regel deaktivieren, wenn Beweise erforderlich
sind. Wir verallgemeinern Redundanz für Klauseln auf Redundanz für boolesche
Funktionen, mit gleich starken Eigenschaften wie bei Klauselbeweissystemen.
Wir verwenden binäre Entscheidungsdiagramme (BDDs), um redundante boo-
lesche Funktionen darzustellen und Beweise für XOR-Techniken auf natürliche
Weise zu erstellen. Um die Effektivität dieses Ansatzes in der Praxis zu zeigen,
präsentieren wir die Ergebnisse einer vorläufigen Implementierung eines Proof-
Checking-Tools, das diese Methode verwendet.
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Chapter 1

Introduction

The Boolean satisfiability problem, or SAT, has become a fundamental represen-
tation in computer science and a key area in the field of automated reasoning. In
short, it asks for the possible truth values of formulas in classical propositional
logic: expressions composed of Boolean variables, which can be only true or
false, and simple operations such as and, or, and not. SAT is well known as the
prototypical NP-complete problem, which means many computational questions
about important properties of graphs, strings, and puzzles can be interpreted
and solved as an instance of SAT, but also that no polynomial-time algorithm
for solving SAT is known to exist.

In practice, however, computer programs for solving SAT instances are often
immensely efficient and capable of handling formulas involving even millions of
variables coming from industrial application domains, such as circuit verifica-
tion [24, 40, 61], automated planning [62, 82], and logical cryptanalysis [73, 74,
87]. Additionally, SAT solvers are often components of other reasoning engines,
such as SMT, or satisfiability modulo theories, solvers [9] and automated theo-
rem provers for first-order logic (for example, [96]). These tools each have their
own application areas, so in this sense the reach of SAT extends even further;
for example, SMT solvers have been used in the area of cloud security [5].

The effectiveness of SAT solvers at scale is the result of decades of research
and engineering effort which have led to clever search algorithms such as conflict-
driven clause learning, or CDCL [10, 72], formula simplification procedures such
as variable elimination [31], and careful solver implementation techniques and
data structures, such as watched literals [75]. Recently, significant progress in
the design of SAT solving techniques has been made possible by the idea of
reasoning about redundancy, in contrast to reasoning only about entailment.
A formula A entails a formula B if B evaluates to true under any assignment
of values to variables for which A is true, in which case the combined formula
A and B is logically equivalent to A alone. A program tasked with solving A
may then choose to instead solve A and B, especially if the inclusion of B can
expedite solving by making other entailments easier to find. On the contrary,
if the program is to solve A and B, it could opt to use the simpler and shorter
formula A.
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Chapter 1 Introduction

Yet the specific task of a SAT solver is to determine whether a formula is
satisfiable, which means it is true under some assignment. As such it is not
strictly necessary that A and B be equivalent to A in order to replace one by
the other, but only that conjoining B to A would not change the answer to the
SAT instance; that is, whether it is satisfiable. In this case B is said to be
redundant with respect to A [64]. Redundancy-based reasoning, which has also
been called interference-based reasoning [43], is focused on formula alterations,
such as adding or removing clauses, that are satisfiability-preserving.

Redundancy has been impactful in SAT in two complementary ways. First,
the removal of redundant clauses from formulas, which are typically presented
in conjunctive normal form as a list of clauses, is the basis of clause elimination
methods, such as blocked clause elimination [59, 67]. These are formula sim-
plification techniques that identify and remove clauses meeting some efficiently-
decidable condition, called a redundancy property, that ensures the clauses can
be removed without changing the formula’s satisfiability. Clause elimination is
typically used during preprocessing, before performing core algorithms such as
CDCL, or at various points throughout solving, sometimes referred to as inpro-
cessing [60]. Methods that remove redundant clauses, especially used in combi-
nation with other simplification methods, can be beneficial to solving, enabling
large formulas to be solved more efficiently [47, 54].

Second, redundancy properties form the basis of proof systems used by SAT
solvers to enable certification of their results. SAT solvers are employed to solve
problems from critical application areas so it is crucial that their output can be
trusted. If a formula is found to be satisfiable, it is usually easy for the solver to
provide an assignment, such as by listing each variable and the assigned truth
value, on which the formula can be evaluated, independently and efficiently, to
verify that the result is indeed true. On the other hand, if a formula is found to
be unsatisfiable, the solver must produce a proof that clearly demonstrates the
formula always evaluates to false. This is primarily done by providing a sequence
of clause addition and deletion instructions, ending with the addition of the un-
satisfiable empty clause, where each clause to be added meets the conditions of
some easily checked redundancy property with respect to the accumulated for-
mula; that is, the result of applying all prior instructions to the original formula.
The popular DRAT proof system [99], for example, has become standard in SAT
solving, and has been the proof format used by the SAT competition in recent
years [6]. It is based on the RAT property [60], which can express the reasoning
behind many of the techniques commonly used by SAT solvers, including those
not easily expressed in the traditional propositional resolution system. In fact,
proof systems based on strong redundancy properties, such as Propagation Re-
dundancy (PR) [51], admit exponentially more compact proofs for some formulas
than are possible with resolution (see [20]).
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Chapter 1 Introduction

The initial success of clause redundancy methods, both for clause elimination
and strong proof systems, shows the significant potential of redundancy-based
reasoning in SAT solving (see also [43]). However, current approaches to redun-
dancy are limited and can be difficult to generalize, restricting their usefulness
and complicating the realization of this potential. This thesis highlights ways in
which such limitations occur and presents a more general and flexible formulation
of redundancy, and redundancy properties, to overcome these limitations, with
the aim of advancing the effectiveness of redundancy-based reasoning in SAT
solving. The remainder of this introductory chapter provides a broad overview
of the main topics and contributions of this thesis, after briefly covering some
background.

1.1 Background

The chapters in this thesis are mostly self-contained, providing the preliminar-
ies necessary to understand the included content. This section offers general
background information that is intended to be helpful in understanding the con-
tributions of this thesis.

1.1.1 Propositional Satisfiability

Propositional logic has long been established as a foundational element of reason-
ing in mathematics and philosophy, dealing with the ways declarative sentences
can be joined or altered to form more complex statements, and the properties
of these ways. The statement “Linz is the capital of Upper Austria, and lies on
the Danube” can be understood as containing two simpler propositions: that A,
“Linz is the capital of Upper Austria,” and B, “Linz lies on the Danube,” joined
as A and B. This symbolic abstraction of the English-language statement has
the advantage that it also represents many other statements, such as “Today is
Tuesday, and the program P compiles without error” or “4 > 3 and 6 > 7.”
The language of propositional logic allows any combinations of propositions by
sentential operators, such as conjunction (“and,” written ∧), disjunction (“or,”
written ∨), and negation (“not,” written ¬).

The truth of such a combination is defined by the truths of the propositions:
A ∧ B is true only in case A and B both are true statements, and it is false if
either A or B is false. Yet for certain combinations, due to their form their truth
does not depend at all on the underlying propositions; for instance, (¬A∨B)∨A
is true, and B ∧ ¬B is not, regardless of what is meant by A and B. The
SAT problem can be seen as asking about a version of this distinction: given
a statement S in propositional logic, however complex, is there a way to assign
meaning to the propositions in S so that S is true, or is S always false, as a
consequence of its form?

3



Chapter 1 Introduction

More formally, we represent atomic propositions by Boolean variables, which
have two possible values: true and false, often represented by 1 and 0, respec-
tively. An assignment to a set of Boolean variables fixes each variable in the
set to a particular value. Boolean expressions, or formulas, are constructed by
applying logical operations, such as negation, conjunction, and disjunction, to
variables or to other expressions. Well-formed formulas evaluate to either true
or false for each assignment to its variables, defining a function from the set of
all possible assignments to their corresponding truth values. A formula is satisfi-
able if it evaluates to true for some assignment, otherwise it is unsatisfiable and
evaluates to false for every assignment. The SAT problem is to decide, given a
Boolean formula, whether it is satisfiable.

The NP-completeness of this question was proven independently by Cook [25]
and Levin [69], showing that any problem solvable by a non-deterministic algo-
rithm in polynomial time can be solved as an instance of SAT. One consequence of
this is that it is widely conceded there is likely no deterministic, polynomial-time
algorithm for SAT. Despite this, modern SAT solving programs often decide in-
stances of SAT extremely efficiently, leading to the increasing use of SAT solvers
as general-purpose problem solving tools for the many interesting and useful
computational problems belonging to NP. Even so, there are many problems
on which SAT solvers perform poorly (see also [35]), and the questions about
why some formulas present more issues than others, and how these issues can be
overcome, are central in SAT solving research.

1.1.2 Clause Elimination

SAT solvers typically expect the formulas they take as input to be in conjunctive
normal form (CNF): a conjunction of one or more clauses, which are disjunctions
of Boolean literals1. Many challenging SAT formulas contain a large number of
clauses, whether as a consequence of being expressed in CNF or due to the na-
ture of the particular instance. Formula simplification procedures are crucial to
efficiently solving large formulas, especially those derived from industrial appli-
cation areas [47, 54]. There is a large body of work on the efficacy of these meth-
ods during preprocessing (see [15]). Further, formula simplification, especially
combinations of multiple methods, can be incredibly powerful as inprocessing
techniques, applied at various stages throughout solving rather than just at the
beginning [60].

Clause elimination procedures form a particular class of formula simplification
methods, and are designed to reduce the size of formulas in CNF by removing
clauses that can be deemed unnecessary. If a formula F entails a clause C, written
F ⊨ C, then the inclusion of C in the formula F∧C can be considered unnecessary

1We often represent a clause by the set of its literals, for example {a,¬b} for a ∨ ¬b, and a
formula by the set of its clauses.
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Chapter 1 Introduction

in the sense that any solutions found for F will also satisfy C, and thus F ∧ C,
anyway. Deciding whether F ⊨ C in general is co-NP-complete, but there are
efficiently-decidable conditions that ensure a clause is entailed. For example, if
C includes both a literal l and its negation ¬l, then C is a tautology and will
be satisfied by any assignment; that is, C is entailed by any F . If F includes
a clause C ′ such that C ′ ⊆ C, then C is called a subsumed clause in F and
F ⊨ C, as C is satisfied by any assignment satisfying C ′. Tautology elimination
and subsumption elimination are common and useful procedures in SAT solving
that can reduce the size of formulas by identifying and removing tautological
and subsumed clauses [31]. Both can be called equivalence-preserving, or model-
preserving, as F and F ′ are logically equivalent, written F ≡ F ′, for the original
formula F and reduced formula F ′.

Not all clause elimination procedures are equivalence-preserving, and may re-
move clauses from a formula F which are not guaranteed to be satisfied by
assignments satisfying the rest of F . A clause C is blocked in F if there is a
literal l ∈ C meeting the following condition: for every clause ¬l ∨D ∈ F , there
is another literal k ∈ C such that ¬k ∈ D [67]. For example, in the formula

F = (¬a ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ ¬d)

the middle clause C = (a ∨ ¬b ∨ c) is blocked by the literal a. Blocked clause
elimination [59] can remove C, leaving only two clauses in the reduced formula
F ′ = (¬a ∨ ¬c) ∧ (¬a ∨ b ∨ ¬d). However, F ′ ̸≡ F . To see this, consider the
assignment τ that sets b to true and all other variables to false; τ satisfies both
clauses in F ′, as they each contain the literal ¬a which evaluates to true, but τ
falsifies all literals in the removed clause C. This means τ satisfies F ′ but not
F , and that the removal of C was not an equivalence-preserving simplification.

Procedures that remove, or add, blocked clauses can change the set of solutions
to a formula, but they cannot change whether solutions exist. For the example
above, even though τ does not satisfy F , the assignment τ ′ that assigns both
a and b to true, and falsifies the other variables, does satisfy F , meaning F ′

and F are both satisfiable formulas. In other words, the original formula F and
the reduced formula F ′ are satisfiability-equivalent. Removing blocked clauses
will not cause an unsatisfiable formula to become satisfiable, as blocked clauses
are redundant. If a clause C can be added to, or removed from, a formula F
without affecting its satisfiability, then C is redundant with respect to F . Clause
elimination procedures are typically based on redundancy properties, such as the
existence of a blocking literal, that can be quickly checked to ensure a clause is
redundant (see [54]).

Removing redundant clauses from a formula is safe in that it will not change
the formula’s satisfiability, but, as seen, it can change the formula’s specific
set of satisfying assignments. Solution reconstruction is an important process
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that transforms assignments satisfying the reduced formula into assignments that
satisfy the original formula, which are often required by users of SAT solvers,
for example as evidence of the formula’s satisfiability. This can be achieved
by recording a partial assignment called a witness for each redundant clause
removed by some elimination procedure. Intuitively, a witness for a clause C
explains how assignments falsifying C can be adjusted to satisfy it, without
accidentally falsifying other clauses in the formula.

More precisely, a partial assignment is a set ω of non-contradictory literals, so
that l ∈ ω means ¬l ̸∈ ω, and can be applied to reduce clauses and formulas.
Specifically C|ω = ⊤, a satisfied clause, if ω includes a literal in C, otherwise
C|ω = {l ∈ C | ¬l ̸∈ ω}, and likewise if C|ω = ⊥, the unsatisfiable empty clause,
for some C ∈ F then F |ω = ⊥, otherwise F |ω = {C|ω | C ∈ F and C|ω ̸= ⊤}. A
partial assignment is a witness for C with respect to F if C|ω = ⊤, and further
F ′|α ⊨ F ′|ω, where α = {¬l | l ∈ C}, where F ′ is the formula F without C.

In the example above we removed the clause C = (a∨¬b∨c) as it is blocked by
the literal a. The partial assignment ω = {a, b,¬c} is a witness for C, as C|ω = ⊤,
and further F ′|ω = ⊤ is entailed by F ′|α, for the reduced formula F ′ without the
clause C. Then the assignment τ = {a → false, b → true, c → false, d → false}
which falsifies C can be altered by taking the values indicated by ω: fixing a and
b to true, and c to false, leaves τ ′ = {a → true, b → true, c → false, d → false}.
As seen already, τ ′ satisfies C and thus F .

This process of altering assignments using witnesses can be extended to a list
of redundant, removed clauses using the reconstruction function. Given a witness
for each clause, the reconstruction function checks, in turn, each removed clause
C to see if it is satisfied by the current assignment, adjusting it using the witness
if not [32, 60]. As a witness exists for any redundant clause [51], and most
clause elimination procedures identify witnesses for the clauses they remove, this
provides a uniform way to reconstruct solutions to the original formula after
removing any number of redundant clauses.

1.1.3 Proofs of Unsatisfiability

While efficiently checkable redundancy properties are at the heart of clause elim-
ination procedures, they are also a foundation for strong proof systems used by
SAT solvers, enabling the efficient certification of SAT results. It is important
for users of SAT solvers to know that their results are correct without needing
to trust blindly that the solver made no mistakes. When a formula is found
to be satisfiable, it is typically straightforward for the solver to report a satis-
fying assignment as evidence of this result; even after using clause elimination
procedures that are not equivalence-preserving, the reconstruction function can
be used as described above. If instead a solver reports that a formula F has
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no solutions, it should provide a proof of the unsatisfiability of F that can be
independently and efficiently validated.

A traditional choice of how a solver can prove that F is unsatisfiable is to
provide a refutation of F in the propositional resolution proof system, also called
a resolution proof of the unsatisfiability of F . Proofs in this system are based on
the resolution rule which, from two clauses l∨C and ¬l∨D with complementary
literals l and ¬l, derives their resolvent C ∨D [83]. This may also be called the
l-resolvent of l∨C and ¬l∨D, and written l∨C⊗l¬l∨D. Multiple formats have
been described for using resolution proofs in practice (for example, [14, 100]),
but generally a proof can be seen as a list of clauses C1, . . . , Cn, such that Cn

is the empty clause ⊥, and each Ci is the resolvent of two clauses in the set
{F,C1, . . . , Ci−1}, possibly annotated to indicate for each Ci exactly which two
clauses can be resolved to produce it [37].

While resolution is a convenient system for certain purposes other than vali-
dating unsatisfiability results, such as generating interpolants [95] and extracting
minimal unsatisfiable cores [30], the production of resolution proofs can be cum-
bersome. The CDCL algorithm, used by many solvers, extends a formula by
learning new clauses while searching for solutions; each learned clause can be de-
rived by a sequence of resolution steps. These steps must be explicitly recorded
to provide a resolution proof, and further it can be difficult to provide such steps
in combination with the use of learned clause minimization strategies [90]. This
is made easier by enabling proof checking tools to perform unit propagation,
which is the repeated replacement of F by F |l, for each unit clause (l) ∈ F .
Then checking individual resolution steps can be replaced by checking that each
clause meets the conditions of RUP, or Reverse Unit Propagation, where a clause
C is RUP with respect to a formula F if unit propagation on F ∧ ¬C produces
the empty clause [39]; this is also written F ⊢1 C. Any clause learned by a solver
during CDCL is a RUP clause and can be added to a RUP proof: a list of clauses
C1, . . . , Cn, such that Cn is the empty clause ⊥, and each Ci is RUP with respect
to F ∧ C1 ∧ · · · ∧ Ci−1.

Resolution and RUP both only derive clauses entailed by the formula, so they
are not easily compatible with techniques that use only satisfiability-preserving
reasoning. The RAT redundancy property allows the derivation of clauses not
entailed by the formula, where a clause l∨C is RAT, or is a Resolution Asymmet-
ric Tautology [60], with respect to F if F ⊢1 C ∨D for each clause ¬l ∨D ∈ F .
For example, with respect to the formula

F = (¬a ∨ ¬d) ∧ (a ∨ ¬b ∨ c) ∧ (¬c ∨ ¬d)

the clause C = (a ∨ ¬b) is RAT for the literal l = a: only the first clause in
F includes the literal ¬a, and the clause (¬b ∨ ¬d) is indeed a RUP clause in
F . Many redundancy properties used in SAT solving are directly expressed by
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RAT, leading to the emergence of the DRAT system, which also permits proof
steps deleting clauses, as the modern standard for proofs of unsatisfiability; for
example, output in the DRAT format is required for certain tracks of the SAT
competition in recent years [6].

More recently, a generalization of RAT known as PR, for Propagation Re-
dundancy, was shown to admit surprisingly concise proofs for certain families of
formulas considered hard for the resolution proof systems. This property is based
on a restriction of the witness characterization of redundant clauses; recall that a
clause C is redundant with respect to a formula F if it has a partial assignment,
or witness, ω such that C|ω = ⊤ and F |α ⊨ F |ω. While this entailment require-
ment is likely not efficiently decidable, a clause C is PR if it has a witness ω such
that each clause in F |ω is RUP with respect to F |α, also written F |α ⊢1 F |ω.

One example of a collection of formulas having short PR proofs are the pi-
geonhole formulas. The formula PHPm

n expresses the statement that there is a
1-to-1 mapping of m pigeons into n holes, and is thus unsatisfiable for m > n.
More precisely, it includes the variables xi,j , where an assignment in which xi,j
is fixed to true can be thought as a mapping in which pigeon number i is in hole
number j. Then the formula comprises the clauses:

xi,1 ∨ · · · ∨ xi,n

for every i ≤ m, and the binary clauses ¬xi,k ∨ ¬xj,k for all i ̸= j up to m and
k ≤ n. Any resolution proof of PHPn

n−1 requires length 2Ω(n) [42], each step
of which must be output by a solver producing resolution proofs. On the other
hand, there exist polynomial-length PR proofs for PHPn

n−1 [51], and for several
related formulas (see [20] for more examples).

It is important to note that if resolution is augmented to allow proof steps that
define new variables, resulting in the Extended Resolution proof system, then
polynomial-length proofs of PHPn

n−1 are possible [42, 92]. In fact, Extended
Resolution is a very strong proof system, and there are at present no known
lower-bounds on the lengths of extended resolution proofs. Though some SAT
solving methods have been designed to produce proofs in extended resolution [4,
71], it is in general not clear how to define new variables as to take advantage
of the strengths of this system. On the other hand, there has been some initial
success with learning PR clauses while solving to produce short PR proofs [50].

1.2 Overview

In this section we provide an overview of the main contributions of this thesis.
These contributions are separated by the chapter in which they are presented.

This thesis includes both new material and work that appears in peer-reviewed
proceedings of major international conferences.
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• Chapter 2 is included in the proceedings of the 10th International Joint
Conference on Automated Reasoning (IJCAR) [8], the flagship, biennial
conference on all aspects of automated reasoning.

• Chapter 3 is included in the proceedings of the 28th International Confer-
ence on Automated Deduction (CADE) [7], a renowned, A-ranked confer-
ence in this field.

• Chapter 4 has not been previously published, and is new to this thesis.

Specific publication information is listed at the beginning of each chapter.
Chapters 2 and 3 were written by the present author in collaboration with co-

authors. For these chapters, this section provides a statement in order to indicate
the specific contributions for which the author of this thesis is responsible.

Chapter 2: Covered Clauses Are Not Propagation Redundant

This chapter revisits a procedure called covered clause elimination, and investi-
gates the limits of PR. As the title suggests, it demonstrates that the complex
redundancy property underlying covered clauses is not captured by the highly
general PR property. The chapter also provides a concrete algorithm for decid-
ing whether clauses are covered, and for reconstructing solutions to satisfiable
formulas after covered clauses have been eliminated.

Covered clause elimination (CCE) [48] is a formula simplification procedure
that tries to identify and remove covered clauses, a class of redundant clauses
based on a complex property that generalizes other well known properties, in-
cluding the blocked property.

Recall that a literal k blocks a clause k ∨C in a formula F if, for every clause
¬k ∨ D in F , there is some literal in D whose negation occurs in C; that is, if
every k-resolvent between k∨C and a clause in F is tautological [67]. If some of
these resolvents are not tautological then k does not block the clause. However,
if any literals occur in every one of these non-tautological resolvents, they are
covered by k. For example, consider the clause k ∨ a ∨ b and

F = (¬k ∨ ¬b) ∧ (k ∨ c) ∧ (¬k ∨ ¬c ∨ l) ∧ (¬k ∨ l) ∧ (c ∨ d).

The resolvent of k ∨ a ∨ b with ¬k ∨ ¬b is tautological, but its resolvents with
¬k ∨¬c∨ l and ¬k ∨ l both include the literal l, which does not already occur in
k ∨ a ∨ b. As a result, k covers l.

The existence of covered literals means that the clause C can be extended by
adding these literals without affecting the formula’s satisfiability. This is because
if some k in C covers a literal l, then C is redundant with respect to F ∧ (C ∨ l),
so that the formulas F ∧ C and F ∧ (C ∨ l) are equisatisfiable. Covered clause
elimination begins by, for a clause C, iteratively adding to it any literals l covered
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by some k ∈ C. If this extension of the original clause C is blocked, then C is a
covered clause and can be removed by CCE, as it is redundant with respect to
F [48].

More precisely, this chapter considers asymmetric covered clause elimination
(ACCE), which also allows the addition of literals l to C that are asymmetric
to C in F ; that is, there is some clause C ′ ∨ ¬l in F , where C ′ ⊆ C. The
addition of asymmetric literals to a clause is in fact equivalence-preserving, so
that asymmetric literals can be added to a clause C in F without affecting its set
of satisfying assignments [47]. Asymmetric literals added to C do not themselves
cover any new literals, but their presence can allow new covered literals to be
added by other elements of C. As a result, ACCE is a stronger clause elimination
procedure than CCE.

CCE and ACCE were described mathematically by Heule, Järvisalo, and
Biere [48], but without an explicit algorithm for identifying such clauses. Chap-
ter 2 provides, and proves correct, an algorithm for identifying asymmetric cov-
ered clauses. This algorithm also produces, for any asymmetric covered clause, a
sequence of witness-labeled clauses which can be used in the typical reconstruc-
tion function to reconstruct solutions to it.

This sequence used for solution reconstruction is notably different than how
solution reconstruction is performed for other redundant clauses, such as for
clauses removed by blocked clause elimination. Instead of recording a witness
for each clause C removed by ACCE, so that assignments not satisfying C can
be corrected in a single step by the reconstruction function, a number of inter-
mediary witnesses and clauses are recorded. For instance, the clause C = (a∨ b)
is covered with respect to the formula

F = (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ x) ∧ (¬c ∨ ¬x ∨ y) ∧ (¬x ∨ y) ∧ (¬b ∨ ¬y).

This is because the literal a in C covers x and the literal x in (a ∨ b ∨ x) covers
y, so that the extended clause is CEXT = (a ∨ b ∨ x ∨ y). Then CEXT is blocked
by y, producing the sequence of of witness-labeled clauses:

({¬a,¬b,¬x, y} : a ∨ b ∨ x ∨ y)

({¬a,¬b, x} : a ∨ b ∨ x)

({a,¬b} : a ∨ b).

Given this sequence, the reconstruction function corrects assignments to ensure
each extension of C is satisfied, ending with C itself. We provide an example
to show that the size of this sequence can be quadratic in the length of the
extended clause. For other clause elimination procedures, reconstruction can be
done with a single witness is at most linear in the size of the clause; for example,
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to reconstruct solutions for clauses removed by blocked clause elimination, only
the blocking literal must be recorded for each clause.

Although ACCE uses a complex sequence of witnesses to reconstruct solutions
for each clause C it removes, rather than a witness for C itself, it has been
proven that there exists a single witness for every redundant clause [51]. This
raises the question of how to formulate witnesses for covered clauses. However,
we prove in Proposition 2.4.1 that finding a single witness for a covered clause
can be as difficult as finding solutions to formulas in general. In short, this is
because the witness may need to include a satisfying assignment for large parts
of the formula F . Moreover, many covered clauses are not PR: the proof of
Theorem 2.4.1 provides the example of the clause C = (k ∨ l) and the formula

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨ a ∨ b) ∧ (x ∨ a ∨ ¬b) ∧ (x ∨ ¬a ∨ b) ∧ (x ∨ ¬a ∨ ¬b) ∧
(y ∨ c ∨ d) ∧ (y ∨ c ∨ ¬d) ∧ (y ∨ ¬c ∨ d) ∧ (y ∨ ¬c ∨ ¬d).

The literal k in C covers x, and the literal l covers y, leading to the extended
clause CEXT = k ∨ l ∨ x ∨ y. This clause is blocked in F , but there is not a
witness for C that satisfies the PR property.

PR encompasses many redundancy properties, so it is surprising that some
covered clauses are not PR. Of course, PR is less general than redundancy itself, so
it is not unexpected that there exist redundant clauses not meeting the conditions
of PR. Yet the particular difficulty raised by covered clauses is interesting as it
highlights the limits of not just PR, but the partial assignment structure used
for witnesses in the characterization of clause redundancy in general.

This observation leads Chapter 2 to also consider clause redundancy itself,
rather than individual redundancy properties such as PR or covered clauses.
Specifically, Theorem 2.5.1 proves that deciding whether a clause C is redundant
with respect to a formula F is a complete problem for the complexity class co-DP.
The class DP was defined by Papadimitriou and Yannakakis to classify problems
that are hard for both NP and co-NP, but do not seem to be complete for either,
and is the class of problems that are the intersection of a problem in NP and a
problem in co-NP [79]:

DP = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ co-NP}.

This chapter is focused on covered clause elimination, a strong clause elimi-
nation procedure, but also investigates the limits of how redundancy is charac-
terized, especially the use of partial assignments as witnesses, as well as the PR
property. Its results suggest that the exploration of novel, and more flexible,
definitions of redundancy could be impactful in SAT.
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Author Contributions

The proof of correctness of the presented ACC algorithm was written by the
present author. The formulation of the witness problem for a redundancy prop-
erty, the proof that finding witnesses for covered clauses solves the search analog
of the SAT problem, and the proof that covered clauses are not all propagation
redundant, are also the work of the present author. The formulation of Theo-
rem 2.5.1 was the result of several discussions among the co-authors, while the
proof was written by the present author.

Chapter 3: Non-Clausal Redundancy Properties

In Chapter 3 we extend the use of redundant clauses in SAT by exploring re-
dundancy properties for constraints that are not in clause form, developing a
more general notion of redundancy. It is motivated both by the issues detailed
in Chapter 2, and the limits of clause redundancy-based proof systems.

The system in which a SAT solver produces proofs places restrictions on the
techniques the solver may use, as those proofs must be able to express the reason-
ing steps taken by the solver. As modern SAT solvers primarily use proof systems
such as DRAT based on clause redundancy properties, they are well suited for
capturing reasoning performed by SAT procedures that operate at the clausal
level. While many SAT procedures are naturally clausal, there are powerful and
efficient techniques that are difficult to express this way. An important example
is reasoning about “exclusive-OR,” or XOR, constraints. SAT instances from ap-
plication domains such as logical cryptanalysis and arithmetic circuit verification
often encode many XOR constraints [89], each of which can require a large set
of clauses to express in CNF. For example, the straightforward translation into
CNF of the expression a XOR b XOR c, which is true only if an odd number of
the variables a, b, c are assigned the value true, is

(¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (a ∨ b ∨ c).

For formulas including clauses for more than a few XOR constraints, it is
typically beneficial for solvers to use specialized procedures that extract them
from the formula, by detecting sets of clauses that encode XORs, and perform
reasoning on them directly, for example during preprocessing (see [15, 88, 89,
97]). A typical approach is to interpret the extracted XORs as a system of lin-
ear equations, which can be simplified using matrix techniques such as Gaussian
elimination [89]. This kind of reasoning is difficult to capture with clause redun-
dancy properties such as RAT and PR; while translations have been described, for
example by Philipp and Rebola-Pardo [80], they are not typically implemented
due to their complexity. Instead, solvers choose to disable XOR reasoning when
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proof production is required, in some cases dramatically worsening their perfor-
mance.

This can be illustrated by considering the Tseitin formula [92, 94] for certain
families of graphs. The Tseitin formula for a graph G is constructed by first as-
signing an odd number of vertices in G the label 1, sometimes called a “charge,”
and the remaining vertices the label 0; the formula is then a set of clauses ex-
pressing that, for each vertex, the parity of its incident edges match its label. By
a classic result of Euler, the sum of the degrees in a graph is even, so that this for-
mula is unsatisfiable. However, for particular sets of graphs, these formulas have
no polynomial-size resolution proofs [92, 94], yet they encode XOR constraints
and can be proven unsatisfiable by a short sequence of Gaussian elimination
reasoning steps. As CDCL essentially searches for proofs in resolution [11], it
is crucial that solvers can perform other procedures that surpass the abilities of
CDCL alone.

While systems based on strong clause redundancy properties, such as PR,
also include polynomial-size proofs for many hard formulas, including Tseitin
formulas, it is not clear how to design general solving methods that take full
advantage of these strengths (although there has been some initial success in this
direction; see [50]). At the same time, Gaussian elimination reasoning and other
non-clausal reasoning techniques are established and efficient solving strategies.
In this work we aim to extend the proof systems used by modern SAT solvers
to be compatible with non-clausal reasoning, in order to enable such powerful
solving methods even when proof output is required.

In order to generalize redundancy-based methods beyond clauses, we present
a characterization of redundancy for Boolean functions, where a function g is re-
dundant with respect to a function f if the functions f and f∧g are satisfiability-
equivalent: both satisfiable, or both unsatisfiable. This is aided by generalizing
the notion of witness as used in redundancy: instead of applying a partial as-
signment to a formula or clause, we define transformations as functions which
map assignments to assignments, so that a transformation σ can be composed
with a function f to create a new Boolean function f ◦ σ. Then we prove as
Theorem 3.3.1 that g is redundant with respect to f if and only if there exists a
transformation ω which acts as a witness in precisely the way as partial assign-
ments can act as witnesses. More precisely, this means g ◦ ω is the tautological
function mapping every assignment to true, and

f ◦ α ⊨ f ◦ ω

where α is a transformation ensuring that g(α(τ)) is false for any assignment τ .
We use this characterization as a framework to define redundancy properties

for Binary Decision Diagrams (BDDs), graphs expressing Boolean functions [3,
17, 68], for which XOR constraints in particular have compact representations.
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We use a BDD operation known as constrain to compute a generalized cofactor
f |g of a BDD f by another g, and define an operation UnitProp for performing
unit propagation over a collection of BDDs. This allows BDD redundancy prop-
erties RUPBDD and PRBDD to be defined analogously to RUP and PR. For exam-
ple, a BDD g is RUPBDD with respect to the conjunction of BDDs f1 ∧ · · · ∧ fn
if UnitProp(f1|¬g, . . . , fn|¬g) produces the always false BDD, or produces two
BDDs which are the negations of one another.

Finally, we demonstrate that proof systems based on these BDD redundancy
properties have the same strengths of their corresponding clausal systems, but
also easily express Gaussian elimination reasoning. The steps performed by
Gaussian elimination can be captured by an inference rule which derives the
sum of XOR constraints; for example, if X is the expression a XOR b and Y is
the expression b XOR c then their sum X ⊕ Y is ¬a XOR c. We show that the
BDD for X ⊕ Y is RUPBDD with respect to the two BDDs for X and Y , and in
Theorem 3.5.1 prove that any sequence of Gaussian elimination reasoning steps
can be translated into a sequence of RUPBDD addition steps without significantly
increasing its size.

Chapter 3 also presents the results of our tool dxddcheck, a preliminary im-
plementation in Python of a proof checker using the RUPBDD redundancy prop-
erty. In brief, we use the SAT solver Lingeling [13] on formulas that can be
found to be unsatisfiable using Gaussian elimination reasoning. From its output
we construct sequences of XORs summarizing the Gaussian elimination steps,
from which dxddcheck constructs the corresponding BDDs and checks that each
new XOR meets the conditions of the RUPBDD property. Even without special-
ized data structures or other optimizations, the proofs can be checked relatively
quickly, showing the promise of using BDDs, and non-clausal reasoning more
generally, for proof production in SAT solvers.

Author Contributions

All lemmas, propositions, and theorems included and proven in this chapter, as
well as the examples, are the work of the present author. The UnitProp algorithm
and the properties RUPBDD, RUPpath, and PRBDD, were formulated and written
by the present author, as was the proof checking tool dxddcheck. Experiments
were carried out in collaboration with the co-author.

Chapter 4: Redundancy by Transformation

Chapter 4 expands on the concept of transformations, functions that map assign-
ments to assignments as introduced in Chapter 3, showing how transformations
can be used as witnesses for redundant clauses. Importantly, we present com-
pactly expressible transformations that can act as witnesses for covered clauses,
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a

b c

⊤

τ(a) τ(b) τ(c) γ(τ)(a) γ(τ)(b) γ(τ)(c)

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 1 1 0

Figure 1.1: A simple transformation diagram is shown for a transformation γ,
along with its explicit definition. If τ assigns a to true, then γ(τ) assigns c the
value false. If instead τ assigns a to false, then γ(τ) assigns b to true and γ does
not affect c.

demonstrating the flexibility of transformations over the typical, partial assign-
ments used for witnesses.

Transformations were defined in Chapter 3 in order to describe a general form
of redundancy for Boolean functions. In the characterization presented there,
transformations were used in composition with functions; in the same way a
partial assignment ω can be applied to a formula F to produce F |ω, a transfor-
mation ω can be composed with a Boolean function f to produce a new function
f ◦ ω. However, this characterization was abstract in nature, and data struc-
tures for defining transformations, or procedures for producing an expression for
compositions such as f ◦ ω were not discussed.

A transformation ω can certainly be defined in a manner similar to a truth
table, by listing the output assignment ω(τ) for each assignment τ . However,
as for defining Boolean functions by truth tables, this is not practical if the
assignments include more than a small number of variables. In this chapter
we introduce transformation diagrams, which are directed acyclic graphs that
define transformations. Similar to BDDs, there is a single root vertex, each non-
terminal vertex is labeled by a variable, and each edge is labeled by a truth-value.
In a transformation diagram, the terminal vertex has no outgoing edges, while
all other vertices have either two edges with different labels, or a single edge.
Vertices with a single outgoing edge are called output vertices, as they correspond
to changes between input and output assignments. An example transformation
diagram is shown in Figure 1.1.

We provide simple recursive procedures for working with transformation dia-
grams. First, for a transformation diagram G, the procedure Apply can be used
to compute the image γG(τ) of any assignment τ , defined at least on the variables
occurring in G, under the transformation γG defined by G. Second, we define a
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a

b

x

y x a ⊤

Figure 1.2: A diagram for a transformation γ which is a witness for a covered
clause.

procedure Comp and prove that it computes an expression for the composition
f ◦ γ given a Boolean expression f . Moreover, if the expression f is a formula
F in conjunctive normal form, then the expression returned by Comp is easy to
translate to conjunctive normal form as well.

We provide as Proposition 4.4.1 a simple characterization of redundancy using
transformations; namely, a function g is redundant with respect to a function
f if and only if there exists a transformation γ such that f ⊨ (f ∧ g) ◦ γ; in
this case we call γ a witness for g with respect to f . Further, we show how
this generalizes the typical characterization of redundant clauses using partial
assignment witnesses, providing in Example 4.4.1 a construction of a graph G
such that its transformation γ is a witness for a clause C with respect to a
formula F , given a partial assignment witness for C with respect to F .

Finally, if C is an asymmetric covered clause with respect to a formula F , we
show how to construct a diagram G, linear in the size of the extended clause
CEXT, such that γ is a witness for C with respect to the formula F . As an
example, recall that the clause C = (a ∨ b) is covered with respect to

F = (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ x) ∧ (¬c ∨ ¬x ∨ y) ∧ (¬x ∨ y) ∧ (¬b ∨ ¬y).

Figure 1.2 shows a transformation diagram which is shown to be a witness for
C with respect to F in Example 4.4.2.

Chapter 5: Conclusion

In the final chapter, we briefly review the contributions made in this thesis and
provide a discussion of possible directions for future work.
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Modifications. This chapter includes subsection headings, not appearing in
the original publication, for added structure.

Abstract. Propositional proof systems based on recently-developed redun-
dancy properties admit short refutations for many formulas traditionally consid-
ered hard. Redundancy properties are also used by procedures which simplify
formulas in conjunctive normal form by removing redundant clauses. Revisiting
the covered clause elimination procedure, we prove the correctness of an explicit
algorithm for identifying covered clauses, as it has previously only been implicitly
described. While other elimination procedures produce redundancy witnesses for
compactly reconstructing solutions to the original formula, we prove that wit-
nesses for covered clauses are hard to compute. Further, we show that not
all covered clauses are propagation redundant, the most general, polynomially-
verifiable standard redundancy property. Finally, we close a gap in the literature
by demonstrating the complexity of clause redundancy itself.
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2.1 Introduction

Boolean satisfiability (SAT) solvers have become successful tools for solving rea-
soning problems in a variety of applications, from formal verification [24] and
security [74] to pure mathematics [44, 53, 65]. Significant recent progress in the
design of SAT solvers has come as a result of exploiting the notion of clause
redundancy (for instance, [50, 54, 55]). For a propositional formula F in con-
junctive normal form (CNF), a clause C is redundant if it can be added to, or
removed from, F without affecting whether F is satisfiable [64].

In particular, redundancy forms a basis for clausal proof systems. These sys-
tems refute an unsatisfiable CNF formula F by listing instructions to add or
delete clauses to or from F , where the addition of a clause C is permitted only if
C meets some criteria ensuring its redundancy. By eventually adding the empty
clause, the formula is proven to be unsatisfiable. Crucially, the redundancy cri-
teria of a system can also be used as an inference rule by a solver searching for
such refutations, or for satisfying assignments.

Proof systems based on the recently introduced PR (Propagation Redundancy)
criteria [51] have been shown to admit short refutations of the famous pigeonhole
formulas [46, 52]. These are known to have only exponential-size refutations in
many systems, including resolution [42] and constant-depth Frege systems [2],
but have polynomial-size PR refutations. In fact, many problems typically con-
sidered hard have short PR refutations, spurring interest in these systems from
the viewpoint of proof complexity [20]. Further, systems based on PR are strong
even without introducing new variables, and have the potential to afford sub-
stantial improvements to SAT solvers (such as in [50, 55]).

The PR criteria is very general, encompassing nearly all other established
redundancy criteria, and it is NP-complete to decide whether it is met by a given
clause [55]. However, when the clause is given alongside a witness, a partial
assignment providing additional evidence for the clause’s redundancy, the PR
criteria can be polynomially verified [51]. SAT solvers producing refutations in
the PR system must find and record a witness for each PR clause addition.

Redundancy is also a basis for clause elimination procedures, which simplify
a CNF formula by removing redundant clauses [47, 54]. These are useful pre-
processing and inprocessing techniques that also make use of witnesses, but for
the task of solution reconstruction: correcting satisfying assignments found after
simplifying to ensure they solve the original formula. A witness for a clause C
details how to fix assignments falsifying C without falsifying other clauses in the
formula [51, 52], so solvers using elimination procedures that do not preserve
formula equivalence typically provide a witness for each removed clause.

Covered clause elimination (CCE) [48] is a strong procedure which removes
covered clauses, a generalization of blocked clauses [59, 67], and has been imple-
mented in various SAT solvers (for example, [12, 13, 34]) and the CNF prepro-
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cessing tool Coprocessor [70]. CCE does not preserve formula equivalence, but
provides no witnesses for the clauses it removes. Instead, it uses a complex tech-
nique to reconstruct solutions in multiple steps, requiring at times a quadratic
amount of space to reconstruct a single clause [54, 60]. CCE has so far only been
implicitly described, and it is not clear how to produce witnesses for covered
clauses.

In this paper we provide an explicit algorithm for identifying covered clauses,
and show that their witnesses are difficult to produce. We also demonstrate that
although covered clauses are redundant, they do not always meet the criteria
required by PR. This suggests it may be beneficial to consider redundancy prop-
erties beyond PR which allow alternative types of witnesses. There has already
been some work in this direction with the introduction of the SR (Substitution
Redundancy) property by Buss and Thapen [20].

The paper is organized as follows. In section 2.2 we provide necessary back-
ground and terminology, while section 2.3 reviews covered clause elimination,
provides the algorithm for identifying covered clauses, and proves that this al-
gorithm and its reconstruction strategy are correct. Section 2.4 includes proofs
about witnesses for covered clauses, and shows that they are not encompassed
by PR. In section 2.5 we consider the complexity of deciding clause redundancy
in general, followed by a conclusion and discussion of future work in section 2.6.

2.2 Preliminaries

A literal is a boolean variable x or its negation ¬x. A clause is a disjunction
of literals, and a formula is a conjunction of clauses. We often identify a clause
with the set of its literals, and a formula with the set of its clauses. For a set of
literals S we write ¬S to refer to the set ¬S = {¬l | l ∈ S}. The set of variables
occurring in a formula F is written var(F ). The empty clause is represented by
⊥, and the satisfied clause by ⊤.

An assignment is a function from a set of variables to the truth values true
and false. An assignment is total for a formula F if it assigns a value for every
variable in var(F ), otherwise it is partial. An assignment is represented by the
set of literals it assigns to true. The composition of assignments τ and υ is

τ ◦ υ(x) =

{︄
τ(x) if x,¬x ̸∈ υ

υ(x) otherwise

for a variable x in the domain of τ or υ. For a literal l, we write τl to represent
the assignment τ ◦ {l}. An assignment satisfies (resp., falsifies) a variable if
it assigns that variable true (resp., false). Assignments are lifted to functions
assigning literals, clauses, and formulas in the usual way.
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Given an assignment τ and a clause C, the partial application of τ to C is
written C|τ and is defined as follows: C|τ = ⊤ if C is satisfied by τ , otherwise,
C|τ = {l | l ∈ C and ¬l ̸∈ τ}. Likewise, the partial application of the assignment
τ to a formula F is written F |τ and defined by: F |τ = ⊤ if σ satisfies F ,
otherwise F |τ = {C|τ | C ∈ F and C|τ ̸= ⊤}. Unit propagation refers to the
iterated application of the unit clause rule, replacing F by F |{l} for each unit
clause (l) ∈ F , until there are no unit clauses left.

We write F ⊨ G to indicate that every assignment satisfying F , and which is
total for G, satisfies G as well. Further, we write F ⊢1 G to mean F implies G
by unit propagation: for every D ∈ G, unit propagation on ¬D ∧ F produces ⊥.

A clause C is redundant with respect to a formula F if the formulas F \{C} and
F ∪ {C} are satisfiability-equivalent: both satisfiable, or both unsatisfiable [64].
The following theorem provides a characterization of clause redundancy based
on logical implication.

Theorem 2.2.1 (Heule, Kiesl, and Biere [52]). A non-empty clause C is redun-
dant with respect to a formula F (with C ̸∈ F ) if and only if there is a partial
assignment ω such that ω satisfies C, and F |α ⊨ F |ω, where α = ¬C.

As a result, redundancy can be shown by providing a witnessing assignment ω
(or witness) and demonstrating that F |α ⊨ F |ω. When the logical implication
relation “⊨” is replaced with “⊢1,” the result is the definition of a propagation
redundant or PR clause, and ω is called a PR witness [51]. Determining whether
a clause is PR with respect to a formula is NP-complete [55], but since it can be
decided in polynomial time whether F ⊢1 G for arbitrary formulas F and G, it
can be efficiently decided whether a given assignment is a PR witness.

A clause elimination procedure iteratively identifies and removes clauses sat-
isfying a particular redundancy property from a formula, until no such clauses
remain. A simple example is subsumption elimination, which removes any clauses
C ∈ F that are subsumed by another clause D ∈ F ; that is, D ⊆ C. Subsump-
tion elimination is model-preserving, as it only removes clauses C such that any
assignment satisfying F \ {C} also satisfies F ∪ {C}.

Some clause elimination procedures are not model-preserving. Blocked clause
elimination [59, 67] iteratively removes from a formula F any clauses C satisfying
the following property: C is blocked by a literal l ∈ C if for every clause D ∈ F
containing ¬l, there is some other literal k ∈ C with ¬k ∈ D. For a blocked
clause C, there may be assignments satisfying F \ {C} which falsify F ∪ {C}.
However, blocked clauses are redundant, so if F ∪ {C} is unsatisfiable, then so
is F \ {C}, thus blocked clause elimination is still satisfiability-preserving.

Clause elimination procedures which are not model-preserving must provide
a way to reconstruct solutions to the original formula out of solutions to the
reduced formula. Witnesses provide a convenient framework for reconstruction:
if C is redundant with respect to F , and τ is a total or partial assignment
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satisfying F but not C, then τ ◦ ω satisfies F ∪ {C}, for any witness ω for C
with respect to F [32, 52]. For reconstructing solutions after removing multiple
clauses, a sequence σ of witness-labeled clauses (ω : C), called a reconstruction
stack, can be maintained and used as follows [32, 60].

Definition 2.2.1. Given a sequence σ of witness-labeled clauses, the reconstruc-
tion function (w.r.t. σ) is defined recursively as follows, for an assignment τ : 1

Rϵ(τ) = τ, Rσ·(ω:D)(τ) =

{︄
Rσ(τ) if τ(D) = ⊤
Rσ(τ ◦ ω) otherwise.

For a set of clauses S, a sequence σ of witness-labeled clauses satisfies the recon-
struction property for S, or is a reconstruction sequence for S, with respect to a
formula F if Rσ(τ) satisfies F ∪S for any assignment τ satisfying F \S. As long
as a witness is recorded for each clause C removed by a non-model-preserving
procedure, even combinations of different clause elimination procedures can be
used to simplify the same formula. Specifically, σ = (ω1 : C1) · · · (ωn : Cn) is
a reconstruction sequence for {C1, . . . , Cn} ⊆ F if ωi is a witness for Ci with
respect to F \ {C1, . . . , Ci}, for all 1 ≤ i ≤ n [32].

The following lemma results from the fact that the reconstruction function
satisfies Rσ·σ′(τ) = Rσ(Rσ′(τ)), for any sequences σ, σ′ and assignment τ [32].

Lemma 2.2.1. If σ is a reconstruction sequence for a set of clauses S with
respect to F ∪ {C}, and σ′ is a reconstruction sequence for {C} with respect to
F , then σ · σ′ is a reconstruction sequence for S with respect to F .

2.3 Covered Clause Elimination

This section reviews covered clause elimination (CCE) and its asymmetric variant
(ACCE), introduced by Heule, Järvisalo, and Biere [48], and presents an explicit
algorithm implementing the more general ACCE procedure. The definitions as
given here differ slightly from the original work, but are generally equivalent. A
proof of correctness for the algorithm and its reconstruction sequence are given.

2.3.1 Covering Literals and Clauses

CCE is a clause elimination procedure which iteratively extends a clause by the
addition of so-called “covered” literals. If at some point the extended clause
becomes blocked, the original clause is redundant and can be eliminated. To
make this precise, the set of resolution candidates in F of C upon l, written

1This improved variant over [32] is due to Christoph Scholl (3rd author of [32]).
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RC(F,C, l), is defined as the collection of clauses in F with which C has a non-
tautological resolvent upon l (where “⊗l” denotes resolution):

RC(F,C, l) = {C ′ ∨ ¬l ∈ F | C ′ ∨ ¬l ⊗l C ̸≡ ⊤}.

The resolution intersection in F of C upon l, written RI(F,C, l), consists of
those literals occurring in each of the resolution candidates, apart from ¬l:

RI(F,C, l) =
(︁⋂︂

RC(F,C, l)
)︁
\ {¬l}.

If RI(F,C, l) ̸= ∅, its literals are covered by l and can be used to extend C.

Definition 2.3.1. A literal k is covered by l ∈ C with respect to F if k ∈
RI(F,C, l). A literal is covered by C if it is covered by some literal in C.

Covered literals can be added to a clause in a satisfiability-preserving manner,
meaning that if the extended clause C ∪ RI(F,C, l) is added to F , then C is
redundant. In fact, C is a PR clause.

Proposition 2.3.1. C is PR with respect to F ′ = F ∧ (C ∪ RI(F,C, l)) with
witness ω = αl, for l ∈ C and α = ¬C.

Proof. Consider a clause D|ω ∈ F ′|ω, for some D ∈ F ′. We prove that ω is a PR
witness by showing that F ′|α implies D|ω by unit propagation. First, we know
l ̸∈ D, since otherwise D|ω = ⊤ would vanish in F |ω. If also ¬l ̸∈ D, this means
D|ω = D|α, and therefore F ′|α ⊢1 D|ω. Now, suppose ¬l ∈ D. Notice that D
contains no other literal k such that ¬k ∈ C, since otherwise D|ω = ⊤ here as
well. As a result D ∈ RC(F,C, l), so RI(F,C, l) ⊂ D and RI(F,C, l) \C ⊆ D|ω.
Notice RI(F,C, l) \ C = (C ∪ RI(F,C, l))|α ∈ F ′|α, therefore F ′|α ⊢1 D|ω.

Consequently, C is redundant with respect to F ∪ {C ′} for any C ′ ⊇ C con-
structed by iteratively adding covered literals to C. In other words, F and
(F \ {C}) ∪ {C ′} are satisfiability-equivalent, so that C could be replaced by
C ′ in F without affecting the satisfiability of the formula. Thus if some such
extension C ′ would be blocked in F , that C ′ would be redundant, and therefore
C is redundant itself. CCE identifies and removes such clauses from F .

Definition 2.3.2. A clause C is covered in F if an extension of C by iteratively
adding covered literals is blocked.

CCE refers to the following procedure: while some clause C in F is covered,
remove C (that is, replace F with F \ {C}).

ACCE strengthens this procedure by extending clauses using a combination
of covered literals and asymmetric literals. A literal k is asymmetric to C with
respect to F if there is a clause C ′ ∨ ¬k ∈ F such that C ′ ⊆ C. The addition of
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asymmetric literals to a clause is model-preserving, so that the formulas F and
(F \ {C}) ∪ {C ∨ k} are equivalent, for any k which is asymmetric to C [47].

Definition 2.3.3. A clause C ′ ⊇ C is an ACC extension of C with respect
to F if C ′ can be constructed from C by the iterative addition of covered and
asymmetric literals. If some ACC extension of C is blocked or subsumed in F ,
then C is an asymmetric covered clause (ACC).

ACCE performs the following: while some C in F is an ACC, remove C from F .
Solvers aiming to eliminate covered clauses more often implement ACCE than
plain CCE, since asymmetric literals can easily be found by unit propagation,
and ACCE is more powerful than CCE, eliminating more clauses [47, 48].

2.3.2 The ACC Algorithm

The procedure ACC(F,C) in Fig. 2.1 provides an algorithm identifying whether
a clause C is an ACC with respect to a formula F . This procedure differs in
some ways, and includes optimizations over the original procedure as implicitly
given by the definition of ACCE. Notably, two extensions of the original clause C
are maintained: E consists of C and any added covered literals, while α tracks
C and all added literals, both covered and asymmetric. The literals in α are
kept negated, so that E ⊆ ¬α, and the clause represented by ¬α is the ACC
extension of the original clause C being computed.

The E and α extensions are maintained separately for two purposes. First, the
covered literal addition loop (lines 9–16) needs to iterate only over those literals
in E, and can ignore those in (¬α) \ E, as argued below.

Lemma 2.3.1. If k is covered by l ∈ (¬α) \ E, then k ∈ ¬α already.

Proof. If l belongs to ¬α but not to E, then there is some clause D ∨ ¬l in F
such that D ⊆ ¬α. But then D ∨ ¬l occurs in RC(F,¬α, l), and consequently
RI(F,¬α, l) ⊆ D ⊆ ¬α. Thus k ∈ RI(F,¬α, l) implies k ∈ ¬α.

Notice that the computation of the literals covered by l ∈ E also prevents any
of these literals already in ¬α from being added again.

The second reason for separating E and α is as follows. When a covered literal
is found, or when the extended clause is blocked, the algorithm appends a new
witness-labeled clause to the reconstruction sequence σ (lines 11 and 14). Instead
of (¬αl : α), the procedure adds the shorter witness-labeled clause (¬El : E).
The proof of statement (3) in lemma 2.3.2 below shows that this is sufficient.

Certain details are omitted, especially concerning the addition of asymmetric
literals (lines 6–7), but notice that it is never necessary to recompute F |α entirely.
Instead the assignment falsifying each u newly added to α can simply be applied
to the existing F |α. In contrast, the for each loop (lines 9–16) should re-iterate
over the entirety of E each time, as added literals may allow new coverings:
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ACC(F,C)

1 σ := ε

2 E := C

3 α := ¬C
4 repeat
5 if ⊥ ∈ F |α then return (true, σ)
6 if there are unit clauses in F |α then
7 α := α ∪ {u} for each unit u

8 else
9 for each l ∈ E

10 G := {D|α | (D ∨ ¬l) ∈ F and D|α ̸= ⊤}
11 if G = ∅ then return

(︁
true, σ · (¬El : E)

)︁
12 Φ :=

⋂︂
G

13 if Φ ̸= ∅ then
14 σ := σ · (¬El : E)

15 E := E ∪ Φ

16 α := α ∪ ¬Φ

17 until no updates to α

18 return (false, ε)

Figure 2.1: Asymmetric Covered Clause (ACC) Identification. The procedure
ACC(F,C) maintains a sequence σ of witness-labeled clauses, and two sets of
literals E and α. The main loop iteratively searches for literals which could be
used to extend C and adds their negations to α, so that the clause represented by
¬α is an ACC extension of C. The set E records only those which could be added
as covered literals. If C is an ACC, then ACC(F,C) returns (true, σ): in line 5
if the extension ¬α becomes subsumed in F , or in line 11 if it becomes blocked.
In either case, the witness-labeled clauses in σ form a reconstruction sequence
for the clause C. Note that lines 5–7 implement Boolean constraint propagation
(over the partial assignment α) and can make use of efficient watched clause data
structures, while line 10 has to collect all clauses containing ¬l, which are still
unsatisfied by α, and thus requires full occurrence lists.
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Example 2.3.1. Let C = a ∨ b ∨ c and

F = (¬a ∨ ¬x1) ∧ (¬a ∨ x2) ∧ (¬b ∨ ¬x1) ∧ (¬b ∨ ¬x2) ∧ (¬c ∨ x1)

Initially, neither a nor b cover any literals, but c covers x1, so it can be added to
the clause. After extending, a in C ∨ x1 covers x2, and b blocks C ∨ x1 ∨ x2.

2.3.3 Correctness of ACC

The following lemma supplies invariants for arguing about ACC(F,C).

Lemma 2.3.2. After each update to α, for the clauses represented by ¬α and
E:

(1) ¬α is an ACC extension of C,

(2) F ∪ {¬α} ⊨ F ∪ {E}, and

(3) σ is a reconstruction sequence for {C} with respect to F ∪ {¬α}.

Proof. Let αi, σi, and Ei refer to the values of α, σ, and E, respectively, after
i ≥ 0 updates to α (so that αi ⊊ αi+1 for each i, but possibly σi = σi+1 and
Ei = Ei+1). Initially, (1) and (2) hold as E = ¬α0 = C. Further, σ0 = ϵ is a
reconstruction sequence for {C} with respect to F ∪ {C}, so (3) holds as well.
Assuming these claims hold after update i, we show that they hold after i+ 1.
First suppose update i+ 1 is the result of executing line 7.

(1) αi+1 = αi ∪ U , where u ∈ U implies (u) is a unit clause in F |αi . Then
¬αi+1 is the extension of ¬αi by the addition of asymmetric literals ¬U .
Assuming ¬αi is an ACC extension of C, then so is ¬αi+1.

(2) Asymmetric literal addition is model-preserving, so F ∪ {¬αi+1} ⊨ F ∪
{¬αi}. Since E was not updated, Ei+1 = Ei. Assuming F ∪ {¬αi} ⊨
F ∪ {Ei}, we get F ∪ {¬αi+1} ⊨ F ∪ {Ei+1}.

(3) Again, asymmetric literal addition is model-preserving. Assuming σi is a
reconstruction sequence for {C} with respect to F ∪{αi}, then lemma 2.2.1
implies σi+1 = σi · ε = σi reconstructs {C} with respect to F ∪ {¬αi+1}.

Now, suppose instead update i+ 1 is executed in line 16.

(1) αi+1 = αi ∪ Φ, for some set of literals Φ ̸= ∅ constructed for l ∈ E ⊆ ¬α.
Notice for k ∈ Φ that k ∈ RI(F,¬α, l), so k is covered by ¬α. Thus
assuming ¬αi is a ACC extension of C, then ¬αi+1 is as well.
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(2) Consider an assignment τ satisfying F∪{¬αi+1}. If τ satisfies ¬αi ⊂ ¬αi+1

then τ satisfies F ∪ {¬αi} and by assumption, F ∪ {Ei}. Since Ei ⊂ Ei+1

in this case, τ satisfies F ∪ {Ei+1}. If instead τ satisfies some literal in
¬αi+1 \ ¬αi then τ satisfies Φ ⊆ Ei+1, so τ satisfies F ∪ {Ei+1}. Thus
F ∪ {¬αi+1} ⊨ F ∪ {Ei+1} in this case as well.

(3) Proposition 2.3.1 implies ((αi)l : ¬αi) is a reconstruction sequence for
{¬αi} with respect to F ∪{¬αi+1}. As Ei ⊆ ¬αi, and F ∪{¬αi} ⊨ F ∪{Ei}
by assumption, then any τ falsifies ¬αi if and only if τ falsifies Ei. Since
l ∈ Ei as well, then ((¬Ei)l : Ei) is, in fact, also a reconstruction sequence
for {¬αi} with respect to F ∪{¬αi+1}. Finally, with the assumption σi is a
reconstruction sequence for C with respect to F ∪ {¬αi} and lemma 2.2.1,
then σi+1 = σi · ((¬Ei)l : Ei) is a reconstruction sequence for {C} in
F ∪ {¬αi+1}.

Thus both updates maintain invariants (1)–(3).

With the help of this lemma we can now show the correctness of ACC(F,C):

Theorem 2.3.1. For a formula F and a clause C, the procedure ACC(F,C)
returns (true, σ) if and only if C is an ACC with respect to F . Further, if
ACC(F,C) returns (true, σ), then σ is a reconstruction sequence for {C} with
respect to F .

Proof. (⇒) Suppose (true, σ) is returned in line 5. Then ⊥ ∈ F |α, so there is
some D ∈ F such that D ⊆ ¬α; that is, ¬α is subsumed by D. By lemma 2.3.2
then an ACC extension of C is subsumed in F , so C is an ACC with respect to
F . Further, subsumption elimination is model-preserving, so that lemmas 2.2.1
and 2.3.2 imply σ is a reconstruction sequence for C with respect to F .

Suppose now that (true, σ) is returned in line 11. Then for α and some l ∈ E,
all clauses in F with ¬l are satisfied by α. Since E ⊆ ¬α, then ¬α is blocked
by l. By lemma 2.3.2 then C is an ACC with respect to F . Now, αl is a
witness for ¬α with respect to F , and (αl : ¬α) is a reconstruction sequence
for {¬α} in F . Further, E ⊆ ¬α, and lemma 2.3.2 gives F ∪ {¬α} ⊨ F ∪ {E},
therefore ((¬Ei)l : Ei) is a reconstruction sequence for {¬α} in F as well. Then
lemma 2.2.1 implies σ · (¬El : E) is a reconstruction sequence for C with respect
to F .
(⇐) Suppose C is an ACC; that is, some C ′ = C ∨ k1 ∨ · · · ∨ kn is blocked
or subsumed in F , where k1 is an asymmetric or covered literal for C, and ki
is an asymmetric or covered literal for C ∨ k1 ∨ · · · ∨ ki−1 for i > 1. Towards a
contradiction, assume ACC(F,C) returns (false, ε). Then for the final value of
α, the clause represented by ¬α is not blocked nor subsumed in F , and hence,
C ′ ̸⊆ ¬α. As C ⊆ ¬α, there must be some values of i such that ¬ki ̸∈ α.
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Let m refer to the least such i; that is, ¬km ̸∈ α, but ¬ki ∈ α for all 1 ≤ i < m.
Thus km is asymmetric, or covered by, Cm−1 = C ∨ k1 ∨ · · · ∨ km−1.

If km is asymmetric to Cm−1, there is some clause D ∨ ¬km in F such that
D ⊆ Cm−1. By assumption, ¬km ̸∈ α but ¬Cm−1 ⊆ α. Further, km ̸∈ α, as
otherwise (D ∨ ¬km)|α = ⊥ and ACC(F,C) would have returned true. But
(D ∨ ¬km)|α = ¬km would be a unit in F |α and added to α by line 7.

If instead km is covered by Cm−1, then km ∈ RI(F,Cm−1, l) for some literal
l ∈ Cm−1 ⊆ ¬α. In fact l ∈ E, by lemma 2.3.1. During the lth iteration of the
for each loop, then km ∈ Φ, and ¬km would be added to α by line 16.

2.3.4 Solution Reconstruction

ACC(F,C) produces, for any asymmetric covered clause C in F , a reconstruction
sequence σ for C with respect to F . This allows ACCE to be used during
preprocessing or inprocessing like other clause elimination procedures, appending
this σ to the solver’s main reconstruction stack whenever an ACC is removed.
However, the algorithm does not produce redundancy witnesses for the clauses
it removes. Instead, σ consists of possibly many witness-labeled clauses, starting
with the redundant clause C, and reconstructs solutions for C in multiple steps.

In contrast, most clause elimination procedures produce a single witness-
labeled clause (ω : C) for each removed clause C. In practice, only the part
of ω which differs from ¬C must be recorded; for most procedures this difference
includes only literals in C, so that reconstruction for {C} needs only linear space
in the size of C. In contrast, the size of σ produced by ACC(F,C) to reconstruct
{C} can be quadratic in the length of the extended clause.

Example 2.3.2. Consider C = x0 and

Fn = (¬xn−2 ∨ xn−1 ∨ xn) ∧ (¬xn−1 ∨ ¬xn) ∧
n−2⋀︂
i=1

(¬xi−1 ∨ xi).

The extended clause ¬α = x0 ∨ x1 ∨ · · · ∨ xn is blocked in Fn by xn−1. Then
ACC(Fn, C) returns the pair with true and the reconstruction sequence2

σ = (x0 ≀ x0)·(x1 ≀ x0∨x1) · · · (xn−2 ≀ x0∨x1∨· · ·∨xn−2)·(xn−1 ≀ x0∨x1∨· · ·∨xn).

The extended clause includes n literals, and the size of σ is O(n2).

2In order to simplify the presentation, only the part of the witness differing from the negated
clause is written, so that (l ≀ C) actually stands for (¬Cl : C). The former is in essence the
original notation used in [60], while set, super or globally blocked, as well as PR clauses [51,
63, 64] require the more general one used in this paper.
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2.4 Witnesses for Covered Clauses

In this section, we consider the specific problem of finding witnesses for (asym-
metric) covered clauses. As these clauses are redundant, such witnesses are guar-
anteed to exist by theorem 2.2.1, though they are not produced by ACC(F,C).
More precisely, we are interested in the witness problem for covered clauses.

2.4.1 The Witness Problem

Definition 2.4.1. The witness problem for a redundancy property P is as fol-
lows: given a formula F and a clause C, if P is met by C with respect to F then
return a witness for C, or decide that P is not met by C.

For instance, the witness problem for blocked clauses is solved as follows: test
each l ∈ C to see if l blocks C in F . As soon as a blocking literal l is found then
αl is a witness for C, where α = ¬C. If no blocking literal is found, then C is
not blocked. For blocked clauses, this polynomial procedure decides whether C
is blocked or not and also determines a witness ω = αl for C.

Solving the witness problem for covered clauses is not as straightforward, as it
is not clear how a witness could be produced when deciding a clause is covered, or
from a sequence σ constructed by ACC(F,C). The following theorem shows that
this problem is as difficult as producing a satisfying assignment for an arbitrary
formula, if one exists. In particular, we present a polynomial time reduction from
the search analog of the SAT problem: given a formula F , return a satisfying
assignment of F , or decide that F is unsatisfiable.

Specifically, given a formula G, we construct a pair (F,C) as an instance to
the witness problem for covered clauses. In this construction, C is covered in F
and has some witness ω. Moreover, any witness ω for this C necessarily provides
a satisfying assignment to G, if there is one.

Proposition 2.4.1. Given a formula G = D1 ∧ · · · ∧Dn, let G′ = D′
1 ∧ · · · ∧D′

n

refer to a variable-renamed copy of G, containing v′ everywhere G contains v,
so that var(G) ∩ var(G′) = ∅. Further, let C = k ∨ l and construct the formula:

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨D1) ∧ · · · ∧ (x ∨Dn) ∧
(y ∨D′

1) ∧ · · · ∧ (y ∨D′
n)

for variables x, y, k, l ̸∈ var(G) ∪ var(G)′. Finally, let ω be a witness for C with
respect to F . Either ω satisfies at least one of G or G′, or G is unsatisfiable.

Proof. First notice for C that x is covered by k and y is covered by l, so that
the extension (k ∨ l ∨ x ∨ y) is blocked in F (with blocking literal x or y). Thus
C is redundant in F , so a witness ω exists.
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We show that ω satisfies G or G′ if and only if G is satisfiable.
(⇒) If ω satisfies G then surely G is satisfiable. If ω satisfies G′ but not G then
the assignment ωG = {x ∈ var(G) | x′ ∈ G′ and x ∈ ω} satisfies G.
(⇐) Assume G is satisfiable, and without loss of generality3 further assume
ω = {k} ◦ ω′ for some ω′ not assigning var(k). Then F |α ⊨ (F |{k})|ω′ ; that is,

F |α ⊨
(︁
(x) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧ (x ∨D1) ∧ · · · ∧ (y ∨D′

n)
)︁
|ω′ .

G is satisfiable, so there are models of F |α in which ¬x is true. However, x
occurs as a unit clause in F |{k}, so it must be the case that x ∈ ω′. Therefore
ω = {k, x} ◦ ω′′ for some ω′′ assigning neither var(k) nor var(x) such that

F |α ⊨
(︁
(¬y) ∧ (y ∨ ¬l) ∧ (y ∨D′

1) ∧ · · · ∧ (y ∧D′
n)
)︁
|ω′′ .

By similar reasoning, ω′′ must assign y to false, so now ω = {k, x,¬y} ◦ ω′′′ for
some ω′′′, assigning none of var(k), var(x), or var(y), such that

F |α ⊨
(︁
(¬l) ∧ (D′

1) ∧ · · · ∧ (D′
n)
)︁
|ω′′′ .

Finally, consider any clause D′
i ∈ G′. We show that ω satisfies D′

i. As ω is
a witness, F |α ⊨ F |ω, so that (D′

i)|ω is true in all models of F |α, including
models which assign y to true. In particular, let τ be a model of G; then (D′

i)|ω
is satisfied by τ ∪ {¬x, y} ∪ ν, for every assignment ν over var(G′). Because
var(D′

i) ⊆ var(G′), then (D′
i)|ω ≡ ⊤. Therefore G′|ω ≡ ⊤.

Proposition 2.4.1 suggests there is likely no polynomial procedure for com-
puting witnesses for covered clauses. The existence of witnesses is the basis for
solution reconstruction, but witnesses which cannot be efficiently computed make
the use of non-model-preserving clause elimination procedures more challenging;
that is, we are not aware of any polynomial algorithm for generating a compact
(sub-quadratic) reconstruction sequence (see also example 2.3.2).

2.4.2 Covered Clauses And PR

As PR clauses are defined by witnesses, procedures deciding PR generally solve
the witness problem for PR. For example, the PR reduct [50] provides a formula
whose satisfying assignments encode PR witnesses, if they exist. However, this
does not produce witnesses for covered clauses, which are not encompassed by
PR. In other words, although any clause extended by a single covered literal
addition is a PR clause by proposition 2.3.1, this is not true for covered clauses.

3If k ̸∈ ω, then ω = {l} ◦ ω′ for some ω′ not assigning var(l) and the argument is symmetric,
ending with G|ω = ⊤. Note that by definition ω satisfies C thus k or l.
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Theorem 2.4.1. Covered clauses are not all propagation redundant.

Proof. By counterexample. Consider the clause C = k ∨ l and the formula

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨ a ∨ b) ∧ (x ∨ a ∨ ¬b) ∧ (x ∨ ¬a ∨ b) ∧ (x ∨ ¬a ∨ ¬b) ∧
(y ∨ c ∨ d) ∧ (y ∨ c ∨ ¬d) ∧ (y ∨ ¬c ∨ d) ∧ (y ∨ ¬c ∨ ¬d).

The extension C ∨ x∨ y is blocked with respect to F , so C is covered. However,
C is not PR with respect to F . To see this, suppose to the contrary that ω is a
PR witness for C. Similar to the reasoning in the proof of theorem 2.4.1, assume,
without loss of generality, that ω = {k} ◦ ω′ for some ω′ not assigning k. Notice
that (x) ∈ F |k, but unit propagation on ¬x ∧ F |α stops without producing ⊥.
Therefore x ∈ ω′, and ω = {k, x} ◦ω′′ for some ω′′ assigning neither k nor x. By
similar reasoning, it must be the case that ¬y ∈ ω′′, so that ω = {k, x,¬y} ◦ω′′′.
Now, (c ∨ d) ∈ F |{k,x,¬y}, but once more, unit propagation on F |α ∧ ¬c ∧ ¬d
does not produce ⊥, so either c or d belongs to ω′′′. Without loss of generality,
assume c ∈ ω′′′ so that ω = {k, x,¬y, c}◦ω′′′′. Finally, both d and ¬d are clauses
in F ′|{k,x,¬y,c}, but neither are implied by F |α by unit propagation. However, if
either d or ¬d belongs to ω, then ⊥ ∈ F |ω. As unit propagation on F |α alone
does not produce ⊥, this is a contradiction.

Notice the formula in theorem 2.4.1 can be seen as an instance of the formula
in proposition 2.4.1, with G as (a∨ b)∧ (a∨¬b)∧ (¬a∨ b)∧ (¬a∨¬b). In fact, as
long as unit propagation on G does not derive ⊥, then G could be any, arbitrarily
hard, unsatisfiable formula (such as an instance of the pigeonhole principle).

2.5 Complexity of Redundancy

In the previous section we introduced the witness problem for a redundancy
property (definition 2.4.1) and showed that it is not trivial, even when the re-
dundancy property itself can be efficiently decided. Further, the witness problem
for PR clauses is solvable by encoding it into SAT [50].

Note that PR is considered to be a very general redundancy property. The
proof of theorem 1 in [51, 52] shows that if F is satisfiable and C redundant,
then F ∧ C is satisfiable by definition. In addition, any satisfying assignment τ
of F ∧ C is a PR witness for C with respect to F . This yields the following:

Proposition 2.5.1. Let F be a satisfiable formula. A clause C is redundant
with respect to F if and only if it is a PR clause with respect to F .

While not all covered clauses are PR, this motivates the question of whether
witnesses for all redundancy properties can be encoded as an instance to SAT,
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and solved similarly. In this section we show that this is likely not the case by
demonstrating the complexity of the redundancy problem: given a clause C and
a formula F , is C redundant with respect to F?

Deciding whether a clause is PR belongs to NP: assignments can be chosen
non-deterministically and efficiently verified as PR witnesses, since the relation
⊢1 is polynomially decidable [55]. For clause redundancy in general, it is not
clear that this holds, as the corresponding problem is co-NP-complete.

Proposition 2.5.2. Deciding whether an assignment ω is a witness for a clause
C with respect to a formula F is complete for co-NP.

Proof. The problem belongs to co-NP since F |α ⊨ F |ω whenever ¬(F |α)∨F |ω is
a tautology. In the following we show a reduction from the tautology problem.
Given a formula F , construct the formula F ′ as below, for x ̸∈ var(F ). Further,
let C ′ = x, so that α = ¬x, and let also ω = x.

F ′ =
⋀︂
C∈F

(C ∨ ¬x)

Then F ′|α = ⊤ and F ′|ω = F . Therefore F ′|α ⊨ F ′|ω if and only if ⊤ ⊨ F .

Theorem 2.5.1 below shows that the irredundancy problem, the complement
of the redundancy problem, is complete for the class DP, the class of languages
that are the intersection of a language in NP and a language in co-NP [79]:

DP = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ co-NP}.

This class was originally introduced to classify certain problems which are hard
for both NP and co-NP, but do not seem to be complete for either, and it char-
acterizes a variety of optimization problems. It is the second level of the Boolean
hierarchy over NP, which is the completion of NP under Boolean operations [21,
98]. We provide a reduction from the canonical DP-complete problem, SAT-
UNSAT: given formulas F and G, is F satisfiable and G unsatisfiable?

Theorem 2.5.1. The irredundancy problem is DP-complete.

Proof. Notice that the irredundancy problem can be expressed as

IRR = { (F,C) | F is satisfiable, and F ∧ C is unsatisfiable}
= { (F,C) | F ∈ SAT} ∩ {(F,C) | F ∧ C ∈ UNSAT}.

That is, IRR is the intersection of a language in NP and a language in co-NP,
and so the irredundancy problem belongs to DP.
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Now, let (F,G) be an instance to SAT-UNSAT. Construct the formula F ′ as
follows, for x ̸∈ var(F ) ∪ var(G):

F ′ =
⋀︂
C∈F

(C ∨ x) ∧
⋀︂
D∈G

(D ∨ ¬x).

Further, let C ′ = x. We demonstrate that (F,G) ∈ SAT-UNSAT if and only if
C ′ is irredundant with respect to F ′.
(⇐) Suppose C ′ is irredundant with respect to F ′. In other words, F ′ is satis-
fiable but F ′ ∧ C ′ is unsatisfiable. Since F ′ ∧ C ′ is unsatisfiable, it must be the
case that F ′|{x} is unsatisfiable; however, F ′ is satisfiable, therefore F ′|{¬x} must
be satisfiable. Since F ′|{¬x} = F and F ′|{x} = G, then (F,G) ∈ SAT-UNSAT.
(⇒) Now, suppose F is satisfiable and G is unsatisfiable. Then some assign-
ment τ over var(F ) satisfies F . As a result, τ ∪ {¬x} satisfies F ′. Because G
is unsatisfiable, there is no assignment satisfying F ′|{x} = G. This means there
is no σ satisfying both F ′ and C ′ = x, and so F ′ ∧ C ′ is unsatisfiable as well.
Therefore C ′ is irredundant with respect to F ′.

Consequently the redundancy problem is complete for co-DP. This suggests
that sufficient SAT encodings of the clause redundancy problem, and its corre-
sponding witness problem, are not possible.

2.6 Conclusion

We revisit a strong clause elimination procedure, covered clause elimination,
and provide an explicit algorithm for both deciding its redundancy property and
reconstructing solutions after its use. Covered clause elimination is unique in that
it does not produce redundancy witnesses for clauses it eliminates, and uses a
complex, multi-step reconstruction strategy. We prove that while witnesses exist
for covered clauses, computing such a witness is as hard as finding a satisfying
assignment for an arbitrary formula.

For PR, a very general redundancy property used by strong proof systems, wit-
nesses can be found through encodings into SAT. We show that covered clauses
are not described by PR, and SAT encodings for finding general redundancy wit-
nesses likely do not exist, as deciding clause redundancy is hard for the class DP,
the second level of the Boolean hierarchy over NP.

Directions for future work include the development of redundancy properties
beyond PR, and investigating their use for solution reconstruction after clause
elimination, as well as in proof systems. Extending redundancy notions by us-
ing a structure for witnesses other than partial assignments may provide more
generality while remaining polynomially verifiable.
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We are also interested in developing notions of redundancy for adding or re-
moving more than a single clause at a time, and exploring proof systems and
simplification techniques which make use of non-clausal redundancy properties.
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Abstract. State-of-the-art refutation systems for SAT are largely based on the
derivation of clauses meeting some redundancy criteria, ensuring their addition to
a formula does not alter its satisfiability. However, there are strong propositional
reasoning techniques whose inferences are not easily expressed in such systems.
This paper extends the redundancy framework beyond clauses to characterize
redundancy for Boolean constraints in general. We show this characterization
can be instantiated to develop efficiently checkable refutation systems using re-
dundancy properties for Binary Decision Diagrams (BDDs). Using a form of
reverse unit propagation over conjunctions of BDDs, these systems capture, for
instance, Gaussian elimination reasoning over XOR constraints encoded in a for-
mula, without the need for clausal translations or extension variables. Notably,
these systems generalize those based on the strong Propagation Redundancy
(PR) property, without an increase in complexity.

34



Chapter 3 Non-Clausal Redundancy Properties

3.1 Introduction

The correctness and reliability of Boolean satisfiability (SAT) solvers is critical
for many applications. For instance SAT solvers are used for verifying hardware
and software systems (e.g. [24, 40, 61]), to search for solutions to open problems
in mathematics (e.g. [53, 65]), and as subroutines of other logical reasoning tools
(e.g. [9, 96]). Solvers should be able to provide solution certificates that are easily
and externally checkable. For a satisfiable formula, any satisfying assignment is
a suitable certificate and typically can be easily produced by a solver. For an
unsatisfiable formula, a solver should be able to produce a refutation proof.

Modern SAT solvers primarily refute unsatisfiable formulas using clausal proof
systems, such as the popular DRAT system [99] used by the annual SAT com-
petition in recent years [6], or newer systems based on the surprisingly strong
Propagation Redundancy (PR) property [51]. Clausal proof systems iteratively
extend a formula, typically given in conjunctive normal form (CNF), by adding
clauses that are redundant; that is, their addition to the formula does not affect
whether it is satisfiable. Systems are distinguished by their underlying redun-
dancy properties, restricted but efficiently-decidable forms of redundancy.

Redundancy is a useful notion in SAT as it captures most inferences made by
state-of-the-art solvers. This includes clauses implied by the current formula,
such as the resolvent of two clauses or clauses learned during conflict-driven
clause learning (CDCL) [10, 72], as well as clauses which are not implied but
derived nonetheless by certain preprocessing and inprocessing techniques [60],
such as those based on blocked clauses [59, 64, 67]. Further, clausal proof sys-
tems based on properties like PR include short refutations for several hard fam-
ilies of formulas, such as those encoding the pigeonhole principle, that have
no polynomial-length refutations in resolution [2] (see [20] for an overview).
These redundancy properties, seen as inference systems, thus potentially offer
significant improvements in efficiency, as the CDCL algorithm at the core of
most solvers searches only for refutations in resolution [11]. While the recent
satisfaction-driven clause learning (SDCL) paradigm has shown some initial suc-
cess [50, 55], it is still unclear how to design solving techniques which take full
advantage of this potential.

Conversely, there are existing strong reasoning techniques which similarly ex-
ceed the abilities of CDCL alone, but are difficult to express using clausal proof
systems. Important examples include procedures for reasoning over CNF for-
mulas encoding pseudo-Boolean and cardinality constraints (see [84]), as well
as Gaussian elimination (see [15, 88, 89, 97]), which has been highlighted as a
challenge for clausal proof systems [45]. Gaussian elimination, applied to sets of
“exclusive-or” (XOR) constraints, is a crucial technique for many problems from
cryptographic applications [89], and can efficiently solve, for example, Tseitin for-
mulas hard for resolution [92, 94]. This procedure, implemented by CryptoMin-
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iSAT [89], Lingeling [13], and Coprocessor [70] for example, can be polynomially
simulated by extended resolution, allowing inferences over new variables, and
similar systems (see [80, 86]). However due to the difficulty of such simulations
they are not typically implemented. Instead solvers supporting these techniques
simply prevent them from running when proof output is required, preferring less
efficient techniques whose inferences can be more easily represented.

This paper extends the redundancy framework for clausal proof systems to in-
clude non-clausal constraints, such as XOR or cardinality constraints, presenting
a characterization of redundancy for Boolean functions in general. We demon-
strate a particular use of this characterization by instantiating it for functions
represented by Binary Decision Diagrams [17], a powerful representation with a
long history in SAT solving (e.g. [18, 29, 33, 76, 78]) and other areas of auto-
mated reasoning (e.g. [19, 41, 66, 81]). We show the resulting refutation systems
succinctly express Gaussian elimination while also generalizing existing clausal
systems. Results using a prototype implementation confirm these systems al-
low compact and efficiently checkable refutations of CNF formulas that include
embedded XOR constraints solvable by Gaussian elimination.

In the rest of the paper, Section 3.2 includes preliminaries and Section 3.3
presents the characterization of redundancy for Boolean functions. Section 3.4
introduces redundancy properties for BDDs, and Section 3.5 demonstrates their
use for Gaussian elimination. Section 3.6 presents the results of our preliminary
implementation, and Section 3.7 concludes.

3.2 Preliminaries

We assume a set of Boolean variables V under a fixed order ≺ and use standard
SAT terminology. The set of truth values is B = {0, 1}. An assignment is a
function τ : V → B and the set of assignments is BV . A function f : BV → B
is Boolean. If f(τ) = 1 for some τ ∈ BV then f is satisfiable, otherwise f is
unsatisfiable. Formulas express Boolean functions as usual, are assumed to be
in conjunctive normal form, and are written using capital letters F and G. A
clause can be represented by its set of literals and a formula by its set of clauses.

A partial assignment is a non-contradictory set of literals σ; that is, if l ∈ σ
then ¬l ̸∈ σ. The application of a partial assignment σ to a clause C is written
C|σ and defined by: C|σ = ⊤ if every τ ∈ BV that satisfies

⋀︁
l∈σ l also satisfies C,

otherwise C|τ = {l | l ∈ C and l,¬l ̸∈ σ}. For example, (x1 ∨ x2)|{¬x1,x2} = ⊤,
and (x1 ∨ x2)|{¬x2,¬x3} = (x1). Similarly the application of σ to a formula F
is written F |σ and defined by: F |σ = ⊤ if C|σ = ⊤ for all C ∈ F , otherwise
F |σ = {C|σ | C ∈ F and C|σ ̸= ⊤}. Unit propagation is the iterated replacement
of F with F |{l} for each unit clause (l) ∈ F , until F includes the empty clause
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⊥, or F contains no unit clauses. A formula F implies a clause C by reverse unit
propagation (RUP) if unit propagation on F ∧ ¬C ends by producing ⊥ [39].

For a formula F and clause C, if F and F ∧ C are equisatisfiable (both satis-
fiable or both unsatisfiable) then C is redundant with respect to F . Efficiently
identifiable redundant clauses are at the foundation of many formula simplifi-
cation techniques and refutation systems (for instance, see [51, 54, 55, 60]). In
general, deciding whether a clause is redundant is complete for the complement
of the class DP [8], containing both NP and co-NP [79], so solvers and proof sys-
tems rely on polynomially-decidable redundancy properties for checking specific
instances of redundancy. The following characterization of redundant clauses
provides a common framework for formulating such properties.

Theorem 3.2.1 (Heule, Kiesl, and Biere [52]). A clause C ̸= ⊥ is redundant
with respect to a formula F if and only if there is a partial assignment ω such
that C|ω = ⊤ and F |α ⊨ F |ω, for the partial assignment α = {¬l | l ∈ C}.

The partial assignment ω, usually called a witness for C, includes at least one
of the literals occurring in C, while α is said to block the clause C. Redundancy
properties can be defined by replacing ⊨ in the theorem above with efficiently-
decidable relations R such that R ⊆ ⊨. Propagation redundancy (PR) [51] re-
places ⊨ with ⊢1, where F ⊢1 G if and only if F implies each D ∈ G by RUP.
The property PR gives rise to a refutation system, in which a refutation is a
list of clauses C1, . . . , Cn and witnesses ω1, . . . , ωn such that Ck|ωk

= ⊤ and
(F

⋀︁k−1
i=1 Ci)|αk

⊢1 (F
⋀︁k−1

i=1 Ci)|ωk
for all 1 ≤ k ≤ n, and F

⋀︁n
i=1Ci ⊢1 ⊥.

Most redundancy properties used in SAT solving can be understood as re-
stricted forms of propagation redundancy. The RAT property [60] is equivalent
to literal propagation redundancy, where the witness ω for any clause C may
differ from the associated α on only one literal; that is, ω = (α \ {¬l}) ∪ {l} for
some l ∈ C [52]. The DRAT system [99] is based on RAT, with the added ability
to remove clauses from the accumulated formula F

⋀︁
Ci.

3.3 Redundancy for Boolean Functions

Theorem 3.2.1 provides a foundation for clausal proof systems by characterizing
redundant clauses in a convenient way. However, the restriction to clauses places
limitations on these systems, making some forms of non-clausal reasoning difficult
to express. For solvers aiming to construct refutations in these systems, this
translates directly to restrictions on which solving techniques can be used.

We show this characterization can be broadened to include redundancy for
non-clausal constraints, and can be used to define useful redundancy properties
and refutation systems. The contributions of this paper are divided into three
corresponding levels of generality. The top level, covered in the current section,
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Rf

RBDD

R

RCNF+XOR

RCNF+Card

. . .

PRBDD

PR [51] RAT [60] RUP [39]

RUPBDD

GE [97]

CR [56]

Figure 3.1: Different notions of redundancy and their relationships. An arrow
from A to B indicates A generalizes B. Properties to the right of the thick
dashed line are polynomially checkable; those to the right of the thin dotted line
only derive logical consequences. Novel properties defined in this paper are grey.

is the direct extension of Theorem 3.2.1 from redundancy for clauses, written R,
to redundancy for Boolean functions, written Rf . The middle level, the focus of
Section 3.4, instantiates the resulting Theorem 3.3.1 to define the refutation sys-
tems RUPBDD and PRBDD based on redundancy for Binary Decision Diagrams.
At the bottom level, these systems are shown to easily handle Gaussian elimina-
tion (GE) in Section 3.5, as well as some aspects of cardinality reasoning (CR).
The relationships between these notions of redundancy are shown in Figure 3.1.

Each level of generality is individually important to this work. At the bottom
level, the straightforward expression of Gaussian elimination by RUPBDD and
PRBDD makes it more feasible for solvers to use this efficient technique with
proof production, especially as these systems generalize their clausal analogs
already in use. The results in Section 3.6 confirm the usefulness of RUPBDD for
this purpose. At the middle level, we show the notion of redundancy instantiated
for BDDs in this way may be capable of other strong forms of reasoning as well.
Finally, the top level provides a very general form of redundancy, independent
of function representation. This may make possible the design of redundancy
properties and refutation systems in contexts where the BDD representation
of constraints is too large; for example, it is known that some pseudo-Boolean
constraints can in general have exponential size BDD representations [1, 58].

This section presents in Theorem 3.3.1 a characterization of redundancy for
Boolean functions in general. One way of instantiating this characterization
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is demonstrated in Section 3.4 where the functions are represented by Binary
Decision Diagrams; the resulting refutation systems are shown in Section 3.5 to
easily express Gaussian elimination. However, the applicability of Theorem 3.3.1
is much broader, providing a foundation for redundancy-based refutation systems
independent of the representation used.

Proofs of theoretical results not included in the text can be found in the
appendix.

3.3.1 Characterizing Rf

We begin with the definition corresponding to the property Rf .

Definition 3.3.1. A Boolean function g is redundant with respect to a Boolean
function f if the functions f and f ∧ g are both satisfiable, or both unsatisfiable.

As we will see, extending Theorem 3.2.1 to the non-clausal case relies on the
notion of a Boolean transformation, or just transformation: a function φ : BV →
BV , mapping assignments to assignments. Importantly, for a function f and
transformation φ, in fact f ◦ φ : BV → B is a function as well, where as usual
f ◦ φ (τ) = f(φ(τ)). For instance let F = x1 ∧ x2 and for all τ ∈ BV , the
transformation φ flips x1, so that φ(τ)(x1) = ¬τ(x1), and ignores x2, that is,
φ(τ)(x2) = τ(x2). Then in fact F ◦ φ is expressed by the formula ¬x1 ∧ x2.

Composing a function with a transformation can be seen as a generalization
of the application of a partial assignment to a formula or clause as defined in
the previous section. Specifically, for a partial assignment σ let σ̂ refer to the
following transformation: for any assignment τ , the assignment σ̂(τ) satisfies⋀︁

l∈σ l, and σ̂ ignores any x ∈ V such that x,¬x ̸∈ σ. Then for any formula F
the formula F |σ expresses exactly the function F ◦ σ̂. In particular, if α is the
partial assignment blocking a clause C then notice C ◦ α̂(τ) = 0 for all τ , but α̂
ignores variables not appearing in C; consequently α̂(τ) = τ if τ already falsifies
C. Generalizing this idea to transformations that block non-clausal constraints is
more complicated. In particular, there may be multiple blocking transformations.

Example 3.3.1. Let g be the function g(τ) = 1 if and only if τ(a) ̸= τ(b) (i.e.
g is an XOR constraint). Transformations α1, α2 are shown in the table below.

τ(a) τ(b) g α1(τ)(a) α1(τ)(b) g ◦ α1 α2(τ)(a) α2(τ)(b) g ◦ α2

0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0
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Both transformations ignore all x ̸= a, b. Notice if g(τ) = 0 then τ is unaffected
by either transformation, and g ◦ α1(τ) = g ◦ α2(τ) = 0 for any assignment τ .
However α1 and α2 are different, so that, for example, if F = ¬a ∧ (b ∨ c) and τ
satisfies the literals ¬a, b, and c then F ◦ α1(τ) = 1 but F ◦ α2(τ) = 0.

Motivated by this we define transformations blocking a function as follows.

Definition 3.3.2. A transformation α blocks a function g if g◦α is unsatisfiable,
and for any assignment τ if g(τ) = 0 then α(τ) = τ .

Notice any g not equal to the constant function 1 has blocking transformations;
for example, by mapping every τ satisfying g to a particular assignment falsifying
it. Using this definition, the following theorem shows how the redundancy of a
Boolean function g with respect to another function f can be demonstrated.
This is a direct generalization of Theorem 3.2.1, using a transformation blocking
g in the place of the partial assignment blocking a clause, and a transformation
ω such that g◦ω is the constant function 1 in place of the witnessing assignment.

Theorem 3.3.1. Let f be a function and g a non-constant function. Then g is
redundant with respect to f if and only if there exist transformations α and ω
such that α blocks g and g◦ω is the constant function 1, and further f ◦α ⊨ f ◦ω.

Proof. (⇒) Suppose g is redundant with respect to f and let α be any transfor-
mation blocking g. If f is unsatisfiable then f ◦α is as well, so that f ◦α ⊨ f ◦ω
holds for any ω. Thus we can take as ω the transformation ω(τ) = τ∗ for all
τ ∈ BV , where τ∗ is some assignment satisfying g. If instead f is satisfiable, by
redundancy so is f ∧ g. Here we can take as ω the transformation ω(τ) = τ∗ for
all τ ∈ BV , where τ∗ is some assignment satisfying f ∧ g. Then both f ◦ ω and
g ◦ ω are the constant function 1, so that f ◦α ⊨ f ◦ ω holds in this case as well.

(⇐) Suppose α, ω meet the criteria stated in the theorem. We show that g is
redundant by demonstrating that if f is satisfiable, then so is f ∧ g. Suppose
τ is an assignment satisfying f . If also g(τ) = 1, then of course τ satisfies
f ∧ g. If instead g(τ) = 0, then α(τ) = τ as α blocks the function g. Thus
f ◦ α (τ) = f(α(τ)) = f(τ) = 1. As f ◦ α ⊨ f ◦ ω, this means f(ω(τ)) = 1. As
g ◦ ω is the constant function 1 then g(ω(τ)) = 1, so ω(τ) satisfies f ∧ g.

The clausal characterization in Theorem 3.2.1 shows that the redundancy of a
clause can be evidenced by providing a witnessing assignment and demonstrating
that an implication holds, providing a foundation for refutations based on the
iterative conjunction of clauses. Theorem 3.3.1 above shows that the redundancy
of a function in general can be seen in the same way by providing transformations
α and ω. Consequently this suggests how to construct refutations based on the
iterative conjunction of Boolean functions.
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Definition 3.3.3. A sequence σ = (g1, α1, ω1), . . . , (gn, αn, ωn) is a redundancy
sequence for a Boolean function f if:

1. αk blocks gk and gk ◦ ωk is the constant function 1, for all 1 ≤ k ≤ n,

2. (f ∧
⋀︁k−1

i=1 gi) ◦ αk ⊨ (f ∧
⋀︁k−1

i=1 gi) ◦ ωk, for all 1 ≤ k ≤ n.

As for clausal redundancy, refutations are intuitively based on the following: if
g1 is redundant with respect to f , and g2 is redundant with respect to f ∧ g1,
then f and f∧g1∧g2 are equisatisfiable; that is, g1∧g2 is redundant with respect
to f . The following holds as a direct consequence.

Proposition 3.3.1. Let f be a Boolean function. If (g1, α1, ω1), . . . , (gn, αn, ωn)
is a redundancy sequence for f , and f ∧

⋀︁n
i=1 gi is unsatisfiable, then so is f .

This shows, abstractly, how redundant Boolean functions can be used as a
basis for refutations in the same way as redundant clauses.

3.3.2 Redundant BDDs

To define practical, and polynomially-checkable, refutation systems based on
non-clausal redundancy in this way, we focus on a representation of Boolean
functions that can be used within the framework described above. Specifically,
we consider sets of BDDs in conjunction, just as formulas are sets of clauses in
conjunction. Clauses are easily expressed by BDDs, and thus this representation
easily expresses (CNF) formulas; this is necessary as we are typically interested
in proving the unsatisfiability not of functions in general, but of (CNF) formulas.
It is important to notice this is only a particular instantiation of Theorem 3.3.1,
and that other representations of Boolean functions may give rise to useful and
efficient systems as well.

BDDs [3, 17, 68] are compact expressions of Boolean functions in the form of
rooted, directed, acyclic graphs consisting of decision nodes, each labeled by a
variable x ∈ V and having two children, and two terminal nodes, labeled by 0
and 1. The BDD for a function f : BV → B is based on its Shannon expansion,

f = (¬x ∧ f ◦ σ̂0) ∨ (x ∧ f ◦ σ̂1)

where σ0 = {¬x} and σ1 = {x}, for x ∈ V . As is common we assume BDDs are
ordered and reduced : if a node with variable label x precedes a node with label
y in the graph then x ≺ y, and the graph has no distinct, isomorphic subgraphs.
Representation this way is canonical up to variable order, so that no two distinct
BDDs with the same variable order represent the same Boolean function [17].

Our use of BDDs for representing non-clausal redundancy relies on the concept
of cofactors as developed in BDD literature. The functions f ◦ σ̂0 and f ◦ σ̂1 are
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called literal cofactors of f by ¬x and x, respectively, and are usually written
f |¬x and f |x. The cofactor of f by a conjunction of literals c = l1∧· · ·∧ ln can be
defined similarly, so that f |c = f ◦σ̂c, for the partial assignment σc = {l1, . . . , ln}.
This notation is the same as for the application of a partial assignment to a clause
or formula from Section 3.2, as the notions coincide. More precisely, if a formula
F and BDD f express the same function, so do the formula F |σc and BDD f |c.

More broadly, for BDDs f and g, a generalized cofactor of f by g is a BDD
h such that f ∧ g = h ∧ g; that is, f and h agree on all assignments satisfying
g. This leaves unspecified what value h(τ) should take when g(τ) = 0, and var-
ious different BDD operations have been developed for constructing generalized
cofactors [26, 27, 28] The constrain operation [27] produces for f and g, with g
not equal to the always false 0 BDD, a generalized cofactor which can be seen
as the composition f ◦ πg, where πg is the transformation [91]:

πg(τ) =

⎧⎨⎩τ if g(τ) = 1

arg min
{τ ′ | g(τ ′)=1}

d(τ, τ ′) otherwise.

The function d is defined as follows: d(τ, τ ′) =
∑︁n

i=1 |τ(xi)− τ ′(xi)| ·2n−i, where
V = {x1, . . . , xn} with x1 ≺ · · · ≺ xn. Intuitively, d is a measure of distance
between two assignments based on the variables on which they disagree, weighted
by their position in the variable order. It is important to notice then that the
transformation πg and the resulting f ◦ πg depend on the variable order, and
may differ for distinct orders. For a conjunction of literals c, though, f ◦πc = f |c
regardless of the order, so that f |g refers to f ◦ πg in general.

As the transformation πg maps an assignment falsifying the function g to the
nearest assignment (with respect to d) satisfying it, a transformation that blocks
the function g can surely be obtained as follows.

Lemma 3.3.1. If g is not equal to the constant function 1 then π¬g blocks g.

This form of generalized cofactor, as computed by the constrain operation,
is well suited for use in redundancy-based reasoning as described above, as the
transformation π¬g depends only on g. As a consequence, for BDDs f1 and f2
in fact (f1 ∧ f2)|¬g ≡ f1|¬g ∧ f2|¬g; that is, the BDD (f1 ∧ f2)|¬g expresses the
same function as the BDD for the conjunction f1|¬g ∧ f2|¬g. Thus given a set of
BDDs f1, . . . , fn we can represent (f1∧· · ·∧fn)|¬g simply by the set of cofactors
fi|¬g and without constructing the BDD for the conjunction f1 ∧ · · · ∧ fn, which
is NP-hard in general. In particular, given a formula F = C1 ∧ · · · ∧ Cn and a
Boolean constraint g, the function F |¬g can be represented simply by applying
the constrain operation to each of the BDDs representing Ci. Therefore, from
Theorem 3.3.1 we can characterize redundancy for conjunctions of BDDs, written
RBDD, as follows.
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UnitProp(f1, . . . , fn)
1 repeat
2 if fi = 0 or fi = ¬fj for some 1 ≤ i, j ≤ n then
3 return “conflict”
4 if U (fi) ̸= ∅ for some 1 ≤ i ≤ n then
5 fj := fj |⋀︁U (fi) for all 1 ≤ j ≤ n

6 until no update to f1, . . . , fn

Figure 3.2: A procedure for unit propagation over a set of BDDs

Proposition 3.3.2. Suppose f1, . . . , fn are BDDs and g is a non-constant BDD.
If there is a partial assignment {l1, . . . , lk} such that for ω =

⋀︁k
i=1 li,

f1|¬g ∧ · · · ∧ fn|¬g ⊨ f1|ω ∧ · · · ∧ fn|ω

and g|ω = 1 then g is redundant with respect to f1 ∧ . . . ∧ fn.

3.4 BDD Redundancy Properties

The previous section provided a characterization of redundancy for Boolean func-
tions, and showed how this could be instantiated for BDDs. In this section we
develop polynomially-checkable properties for showing that a BDD is redundant
with respect to a conjunction of BDDs, and describe their use in refutation sys-
tems for proving the unsatisfiability of formulas.

3.4.1 The UnitProp Algorithm

As Theorem 3.2.1 is used for defining clausal redundancy properties, Proposition
3.3.2 gives rise to BDD redundancy properties by replacing ⊨ with polynomially-
decidable relations. Similar to the use of the unit propagation procedure by the
clausal properties RUP and PR, we describe a unit propagation procedure for use
with a set of BDDs and derive analogous properties RUPBDD and PRBDD.

For a BDD f , the Shannon expansion shows that if f |¬l = 0 (i.e. f |¬l is the
always false 0 BDD) for some literal l, then f = l∧ fl, and therefore f ⊨ l. Then
the units implied by f , written U (f), can be defined as follows.

Definition 3.4.1. U (f) = {l | var(l) ∈ V and f |¬l = 0}, for f : BV → B.

As f |¬l can be computed in O(|f |), where |f | is the number of nodes in the BDD
for f [85], then U (f) can certainly be computed in O(|V | · |f |) ⊆ O(|f |2), though
this can be reduced to O(|f |). We write

⋀︁
U (f) to mean

⋀︁
l∈U (f) l.
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(b) UnitProp((b ∨ c)|¬g, (a ∨ b)|¬g, (a ∨ c)|¬g)

Figure 3.3: Example derivation of a constraint g, shown in (a), using RUPBDD. In
(b), the top line shows the BDDs for each of the clauses (b∨c), (a∨c), (a∨b) after
cofactoring by g. The second line shows each of these BDDs after cofactoring
by the unit ¬a ∈ U((b ∨ c)|¬g). Here, the middle BDD becomes simply the unit
b, and the third line shows each BDD cofactored by the unit b. In this line, the
third BDD has become 0, so a conflict is returned.

Figure 3.2 provides a sketch of the unit propagation procedure. Whenever
U (f) is non-empty for some f in a set of BDDs, each BDD in the set can be
replaced with its cofactor by

⋀︁
U (f). This approach to unit propagation is

largely similar to that of Olivo and Emerson [77], except we consider two conflict
situations: if some BDD becomes 0, or if two BDDs are the negations of each
other.

For N = |f1|+· · ·+|fn| the procedure UnitProp(f1, . . . , fn) can be performed in
time O(N2). In line 5, if fj and

⋀︁
U (fi) share no variables, then fj = fj |⋀︁U (fi),

otherwise the BDD for fj |⋀︁U (fi) can be constructed in time O(|fj |) and further
|fj |⋀︁U (fi)| < |fj |. This procedure is correct: “conflict” is only returned when⋀︁n

i=1 fi is unsatisfiable (see the appendix for the proof).
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Proposition 3.4.1. If UnitProp(f1, . . . , fn) returns “conflict” then

f1 ∧ · · · ∧ fn ≡ 0.

3.4.2 The Properties RUPBDD and PRBDD

UnitProp generalizes the usual unit propagation procedure on a formula: if C is a
clause, then U (C) ̸= ∅ implies C is a unit clause and

⋀︁
l∈U (C) l = C. We extend

the relation ⊢1 and the definition of RUP accordingly.

Definition 3.4.2. Let f1, . . . , fn and g ̸= 0 be BDDs. Then f1∧ · · ·∧fn implies
g by RUPBDD if UnitProp(f1|¬g, . . . , fn|¬g) returns “conflict.”

Example 3.4.1. Let F = {C1 = b ∨ c, C2 = a ∨ b, C3 = a ∨ c}, and assume a ≺
b ≺ c. Consider g as shown in Figure 3.3, expressing the cardinality constraint
g(τ) = 1 if and only if τ satisfies at least two a, b, c; also written {a, b, c} ≥ 2.
Figure 3.3 shows the updates made throughout UnitProp(C1|¬g, C2|¬g, C3|¬g).
Notice that U (C1|¬g) = {¬a}, and U ((C2|¬g)|¬a) = {b}. Then C3|¬g after
cofactoring by ¬a and b becomes the constant BDD 0, so the procedure returns
“conflict.” As a result, F implies the BDD g by RUPBDD.

We show that RUPBDD is a redundancy property. Given BDDs f1, . . . , fn, g,
checking whether g is implied by RUPBDD primarily consists of the UnitProp
procedure, though each fi|¬g must first be constructed, which can be done in
time O(|fi| · |g|) [27]. The size of this BDD may in some cases be larger than the
size of fi, though it is typically smaller [27, 91] and at worst |fi|¬g| ≤ |fi| · |g|.
Consequently it can be decided in time O(|g|2 · N2) whether g is implied by
RUPBDD. Finally if g is implied by RUPBDD then it is redundant with respect to
f1∧· · ·∧fn; in fact, it is a logical consequence (proof available in the appendix).

Proposition 3.4.2. If f1 ∧ · · · ∧ fn ⊢1 g, then f1 ∧ · · · ∧ fn ⊨ g.

From RUPBDD the property PR can be directly generalized to this setting as
well. Specifically, we define the redundancy property PRBDD as follows.

Definition 3.4.3. Suppose f1, . . . , fn are BDDs and g is a non-constant BDD.
Then g is PRBDD with respect to

⋀︁n
i=1 fi if there is partial assignment {l1, . . . , lk}

such that g|ω = 1 and
⋀︁n

i=1 fi|¬g ⊢1 fj |ω for all 1 ≤ j ≤ n, where ω =
⋀︁k

i=1 li.

Proposition 3.3.2 shows if g is PRBDD with respect to f = f1 ∧ · · · ∧ fn then g is
redundant with respect to f , thus PRBDD is a redundancy property.

Notice these properties and derivations directly generalize their clausal equiv-
alents; for example, if C is PR with respect to a formula F , then (the BDD
expressing) C is PRBDD with respect to (the set of BDDs expressing) F . Decid-
ing whether a clause C is PR with respect to a formula F is NP-complete [55].
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As PRBDD generalizes PR, then PRBDD is NP-hard as well. Further, checking
whether g is PRBDD with respect to f1 ∧ · · · ∧ fn by some candidate ω can be
done polynomially as argued above, thus the following holds.

Proposition 3.4.3. Deciding whether g is PRBDD with respect to f1 ∧ · · · ∧ fn,
given the BDDs g, f1, . . . , fn, is NP-complete.

In other words, the decision problems for PR and PRBDD are of equal com-
plexity.

3.4.3 Refutations with BDD Redundancy Properties

The properties RUPBDD and PRBDD as defined in this section can be used to
show that a BDD can be added to a set of BDDs in a satisfiability-preserving
way. Of course, any clause has a straightforward and simple representation as a
BDD, so that a formula can be easily represented this way as a set of BDDs. As
a result RUPBDD and PRBDD can be used as systems for refuting unsatisfiable
formulas. In the following, we identify a clause with its representation as a BDD,
and a formula with its representation as a set of such BDDs.

To simplify the presentation of derivations based on RUPBDD and PRBDD we
introduce an additional redundancy property, allowing derivations to include
steps to directly derive certain BDDs path-wise in the following way.

Definition 3.4.4. f1 ∧ · · · ∧ fn implies g by RUPpath if (1) f1 ∧ · · · ∧ fn ⊢1 ¬c
for every c = l1 ∧ · · · ∧ lm such that l1, . . . , lm is a path from the root of g to the
0 terminal, and (2) |g| ≤ log2(|f1|+ · · ·+ |fn|).

If f1∧· · ·∧fn implies g by RUPpath then it is a logical consequence of f1∧· · ·∧fn,
as this checks that no assignment satisfies both ¬g and f1∧· · ·∧fn. The number
of paths in a BDD g can however be exponential in |g|, as in the BDD for an XOR
constraint, so the second condition ensures RUPpath is polynomially-checkable.

The property RUPpath is primarily useful as it allows the derivation of a BDD
g whose representation as a set of clauses is included in {f1, . . . , fn}: if c cor-
responds to a path to 0 in g, the clause ¬c is included in the direct clausal
translation of g. In this context, the restrictive condition (2) in Definition 3.4.4
can in fact be removed, since the number of paths in g is then at most n.

Definition 3.4.5. A sequence of BDDs g1, . . . , gn is a RUPBDD derivation from
a formula F if F ∧

⋀︁k−1
i=1 gi implies gk by RUPBDD, or by RUPpath, for all 1 ≤ k ≤

n. A sequence of BDD and assignment pairs (g1, ω1), . . . , (gn, ωn) is a PRBDD
derivation from a formula F if F ∧

⋀︁k−1
i=1 gi implies gk by RUPpath, or ωk is a

PRBDD-witness for gk with respect to F ∧
⋀︁k−1

i=1 gi, for all 1 ≤ k ≤ n.

As RUPBDD, RUPpath, and PRBDD are redundancy properties, any RUPBDD or
PRBDD derivation corresponds to a redundancy sequence of the same length.
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Example 3.4.2. Consider the formula F = {a∨ b, a∨ c, b∨ c, a∨ d, b∨ d, c∨ d}
and let g be the BDD such that g(τ) = 1 if and only if τ satisfies at least 3
of a, b, c, d; that is, g is the cardinality constraint {a, b, c, d} ≥ 3. As seen in
Example 3.4.1, the constraint g1 = {a, b, c} ≥ 2 is RUPBDD with respect to F ;
similarly so are the constraints, g2 = {a, c, d} ≥ 2, and g3 = {b, c, d} ≥ 2. Now,
¬a ∈ U (g3|¬g): for any τ the assignment π¬g(τ) satisfies at most 2 of a, b, c, d,
and if a is one of them then π¬g(τ) surely falsifies g3. As a result, (g3|¬g)|a = 0.
In a similar way ¬b ∈ U (g2|¬g). Since g1|¬g cofactored by the units ¬a and ¬b is
falsified, then UnitProp(g1|¬g, g2|¬g, g3|¬g) returns “conflict.” Consequently g is
RUPBDD with respect to F ∧ g1∧ g2∧ g3, and g1, g2, g3, g is a RUPBDD derivation
from F .

This example can be generalized to show that RUPBDD is capable of expressing
an inference rule for cardinality constraints called the diagonal sum [57]. For
L = {l1, . . . , ln} let Li = L \ {li}; the diagonal sum derives L ≥ k + 1 from the
set of all n constraints Li ≥ k.

While the properties and refutation systems RUPBDD and PRBDD easily ex-
tend their clausal counterparts, it is important to notice that redundancy-based
systems using BDDs can be defined in other ways. For instance, say

⋀︁n
i=1 fi im-

plies g by IMPpair if fi|¬g ∧ fj |¬g = 0 for some i, j. Then IMPpair is polynomially
checkable, computing the conjunction for each pair i, j. Moreover, it is clear that
f1 ∧ f2 ⊨ g if and only if f1 ∧ f2 implies g by IMPpair. As many logical inference
rules have this form, it is possible that systems based on IMPpair are very strong.

3.5 Gaussian Elimination

Next, we show how the Gaussian elimination technique for simplifying XOR
constraints embedded in a formula is captured by the redundancy properties
defined in the previous section. Specifically, if an XOR constraint X is derivable
from a formula F by Gaussian elimination, we show there is a RUPBDD derivation
from F including the BDD expressing X with only a linear size increase.

An XOR clause [x1, . . . , xn]
p expresses the function f : BV → B, where V =

{x1, . . . , xn} and p is 0 or 1, such that f(τ) = 1 if and only if the number of
xi ∈ V satisfied by τ is equal modulo 2 to p. In other words, p expresses the
parity of the positive literals xi an assignment must satisfy in order to satisfy
the XOR clause. As [x, y, y]p and [x]p express the same function, we assume no
variable occurs more than once in an XOR clause. Notice that [ ]0 expresses the
constant function 1, while [ ]1 expresses 0.

The Gaussian elimination procedure begins by detecting XOR clauses encoded
in a formula F . The direct encoding D(X) of X = [x1, . . . , xn]

p is the collection
of clauses of the form C = {l1, . . . , ln}, where each li is either xi or ¬xi and the
number of negated literals in each C is not equal modulo 2 to p The formula
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D(X) expresses the same function as X, containing the clauses preventing each
assignment over the variables in X not satisfying X. As a result, D(X) implies
the BDD expressing X by RUPpath (see appendix for proof).

Lemma 3.5.1. D(X) implies X by RUPpath, for X = [x1, . . . , xn]
p.

Similar to the approach of Philipp and Rebola-Pardo [80], we represent Gaus-
sian elimination steps by deriving the addition X ⊕ Y of XOR clauses X =
[x1, . . . , xm, z1, . . . , zr]

p and Y = [y1, . . . , yn, z1, . . . , zr]
q, given by:

X ⊕ Y = [x1, . . . , xm, y1, . . . , yn]
p⊕q.

The following lemma shows that X ⊕ Y is RUPBDD with respect to X ∧ Y ; that
is, if a RUPBDD derivation includes X and Y then X ⊕Y can be derived as well.
This is a result of the following observation: while the precise cofactors of X and
Y by ¬(X ⊕ Y ) depend on the variable order ≺, they are the negations of one
another (proof is included in the appendix).

Lemma 3.5.2. Let v be the ≺-greatest variable in occurring in exactly one of X
and Y , and assume v occurs in Y . Then X|¬(X⊕Y ) = X, and Y |¬(X⊕Y ) = ¬X.

The above lemma shows that the procedure UnitProp(X|¬X⊕Y , Y |¬X⊕Y ) re-
turns “conflict” immediately, and as a result X ⊕ Y is RUPBDD with respect to
f1 ∧ · · · ∧ fn ∧X ∧ Y for any set of BDDs f1, . . . , fn.

Define a Gaussian elimination derivation Π from a formula F as a sequence of
XOR clauses Π = X1, . . . , XN , such that for all 1 ≤ i ≤ N , either Xi = Xj ⊕Xk

for j, k < i, or D(Xi) ⊆ F . The size of the derivation is |Π| =
∑︁N

i=1 si, where
si is the number of variables occurring in Xi. We show that Π corresponds to a
RUPBDD derivation with only a linear size increase. This size increase is a result
of the fact that the BDD expressing an XOR clause X = [x1, . . . , xn]

p has size
2n+ 1 (proof of the following theorem is available in the appendix).

Theorem 3.5.1. Suppose Π = X1, . . . , XN is a Gaussian elimination derivation
from a formula F . Then there is a RUPBDD derivation from F with size O(|Π|).

A consequence of this theorem is that RUPBDD includes short refutations for
formulas whose unsatisfiability can be shown by Gaussian elimination. More
precisely, suppose a formula F includes the direct representations of an unsat-
isfiable collection of XOR clauses. Then there is a polynomial-length Gaussian
elimination derivation of the unsatisfiable XOR clause [ ]1 from F [89], and by
Theorem 3.5.1, a polynomial-length RUPBDD derivation of the unsatisfiable BDD
0.

Notably, RUPBDD then includes short refutations of, for example, the Tseitin
formulas, for which no polynomial-length refutations exist in the resolution sys-
tem [92, 94]. This limitation of resolution holds as well for the clausal RUP
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p cnf 4 10
-3 -1 2 0
-3 1 2 0
3 -1 -2 0
3 1 2 0

-4 -2 1 0
-4 2 -1 0
4 -2 -1 0
4 2 1 0

-3 -4 0
3 4 0

Lingeling

x 1 2 3 0
x 3 4 0
x -1 2 4 0

d x 1 2 3 0
x 1 2 4 0

0
dxddcheck

Figure 3.4: Usage of the tool dxddcheck, showing an example formula and refu-
tation.

system, without the ability to introduce new variables, as it can be polynomially
simulated by resolution [11, 36]. As the translation into RUPBDD used to prove
Theorem 3.5.1 introduces no new variables, this demonstrates the strength of
RUPBDD compared to resolution and its clausal analog RUP.

3.6 Results

To begin to assess the practical usefulness of the systems introduced in Sec-
tion 3.4, we have implemented in Python a prototype of a tool called dxdd-
check1 for checking refutations in a subset of RUPBDD. In particular we focus
on the result of Section 3.5, that Gaussian elimination is succinctly captured by
RUPBDD.

We ran the SAT solver Lingeling (version bcp) on a collection of crafted un-
satisfiable formulas, all of which can be solved using Gaussian elimination. From
Lingeling output we extract a list of XOR clause additions and deletions, ending
with the addition of the empty clause, as shown in Figure 3.4. This list is passed
directly to dxddcheck, which carries it out as a DRUPBDD refutation; that is, a
RUPBDD refutation also allowing steps which remove or “delete” BDDs from the
set. These deletion steps can be removed without affecting the correctness of the
refutation, though their inclusion can decrease the time required for checking it,
as is the case with DRUP and RUP.

For these experiments we used a 1.8 GHz Intel Core i5 CPU with 8 GB of
memory. The table shows the time Lingeling took to solve each formula, the
number of lines in the constructed proof and its size, and the time dxddcheck
took to construct and check the associated DRUPBDD proof. These benchmarks
are well-known challenging examples in the contexts of XOR reasoning and proof

1Source code is available under the MIT license at http://fmv.jku.at/dxddcheck along with
the benchmarks used and our experimental data.
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Formula

num.
of

variables

num.
of

clauses

solving
time
(sec.)

num.
proof
lines

proof
size

(KB)

checking
time
(sec.)

rpar_50 148 394 0.1 297 7 0.34
rpar_100 298 794 0.1 597 15 1.35
rpar_200 598 1594 0.2 1197 35 6.67
mchess_19 680 2291 0.0 1077 41 4.07
mchess_21 836 2827 0.1 1317 50 5.09
mchess_23 1008 3419 0.1 1581 63 6.42

urquhart-s5-b2 107 742 0.0 150 7 0.95
urquhart-s5-b3 121 1116 0.1 150 9 1.64
urquhart-s5-b4 114 888 0.0 150 8 1.20

production. The rpar_n formulas are compact, permuted encodings of two con-
tradictory parity constraints on n variables, described by Chew and Heule [23].
The mchess_n formulas are encodings of the mutilated n× n-chessboard prob-
lem, as studied by Heule, Kiesl, and Biere [49] as well as Bryant and Heule [18].
The urquhart formulas [22, 93] are examples of hard Tseitin formulas.

Lingeling solved each formula by Gaussian elimination almost instantly. We
ran Lingeling and Kissat [16], winner of the main track of the SAT competition
in 2020, on the benchmarks without Gaussian elimination, as is required for
producing clausal refutations, using an Intel Xeon E5-2620 v4 CPU at 2.10 GHz.
Only rpar_50 was solved in under about 10 hours, producing significantly larger
proofs; for instance, Kissat produced a refutation of size 6911 MB.

While methods to construct clausal proofs from Gaussian elimination have
been proposed, most are either lacking a public implementation or are limited in
scope [23, 80]. An exception is the approach very recently proposed by Gocht and
Nordström using pseudo-Boolean reasoning [38], with which we are interested in
carrying out a thorough comparison of results in the future.

3.7 Conclusion

We presented a characterization of redundancy for Boolean functions, general-
izing the framework of clausal redundancy and efficient clausal proof systems.
We showed this can be instantiated to design redundancy properties for func-
tions given by BDDs, and polynomially-checkable refutation systems based on
the conjunction of redundant BDDs, including the system PRBDD generalizing
the clausal system PR. The system PRBDD also generalizes RUPBDD, which can
express Gaussian elimination reasoning without extension variables or clausal
translations. The results of a preliminary implementation of a subset of RUPBDD
confirms such refutations are compact and can be efficiently checked.

50



Chapter 3 Non-Clausal Redundancy Properties

Examples 3.4.1 and 3.4.2 show RUPBDD reasoning over cardinality constraints,
and we are interested in exploring rules such as generalized resolution [56, 57].
Other forms of non-clausal reasoning may be possible using BDD-based redun-
dancy systems as well. We are particularly interested in exploring the property
IMPpair.

While the system RUPBDD derives only constraints implied by the conjunc-
tion of the formula and previously derived constraints, PRBDD is capable of
interference-based reasoning [43], like its clausal analog PR; there are possibly
novel, non-clausal reasoning techniques taking advantage of this ability. Fur-
ther, RUPBDD and PRBDD are based on the conjunction of BDDs, though Theo-
rem 3.3.1 is more general and could be used for other ways of expressing Boolean
functions. Finally we are interested in developing an optimized tool for checking
proofs in the system PRBDD, as well as a certified proof checker.

Acknowledgements. We extend our thanks to Marijn Heule for his helpful
comments on an earlier draft of this paper.

Chapter 3 Appendix

Proposition 3.3.2. Suppose f1, . . . , fn are BDDs and g is a non-constant
BDD. If there is a partial assignment {l1, . . . , lk} such that for ω =

⋀︁k
i=1 li,

f1|¬g ∧ · · · ∧ fn|¬g ⊨ f1|ω ∧ · · · ∧ fn|ω

and g|ω = 1 then g is redundant with respect to f1 ∧ . . . ∧ fn.

Proof. Let f = f1 ∧ · · · ∧ fn and α = π¬g. We know α blocks g by Lemma 3.3.1,
and f ◦α ≡ f1|¬g ∧ · · · ∧ fn|¬g. Further, let σ = {l1, . . . , lk} so that f ◦ σ̂ is equal
to f |ω ≡ f1|ω ∧ · · · ∧ fn|ω. By Theorem 3.3.1 then g is redundant with respect
to f .

Proposition 3.4.1. If UnitProp(f1, . . . , fn) returns “conflict” then

f1 ∧ · · · ∧ fn ≡ 0.

Proof. Let fk
j refer to the BDD fj after k iterations of the outer loop, and let Uk

refer to the conjunction of all units produced in iteration k. Then fk
j = fk−1

j |Uk

for any k > 0. As
⋀︁n

j=1 f
k−1
j ⊨ Uk, then

⋀︁n
j=1 f

k−1
j ≡

⋀︁n
j=1 f

k−1
j ∧ Uk, also

equivalent to (
⋀︁n

j=1 f
k−1
j )|Uk

∧Uk. As this cofactor distributes over conjunction,
this is equivalent to

⋀︁n
j=1 f

k−1
j |Uk

∧Uk. Thus we have
⋀︁n

j=1 f
k
j ∧Uk ≡

⋀︁n
j=1 f

k−1
j .
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If “conflict” is returned in the first iteration, then clearly
⋀︁n

j=1 fj is unsat-
isfiable. By the reasoning above, after iteration k, inductively

⋀︁n
j=1 f

k
j and⋀︁n

j=1 f
k−1
j are equisatisfiable. As a result, if “conflict” is returned after any

number of iterations k ≥ 0, then
⋀︁n

j=1 fj is unsatisfiable.

Proposition 3.4.2. If f1 ∧ · · · ∧ fn ⊢1 g, then f1 ∧ · · · ∧ fn ⊨ g.

Proof. If f1 ∧ · · · ∧ fn ⊢1 g then f1|¬g ∧ · · · ∧ fn|¬g ≡ 0 by Proposition 3.4.1.
Then for f =

⋀︁n
i=1 fi, the BDD f |¬g is the constant 0. As f |¬g is a generalized

cofactor of f by ¬g, then in fact f ∧ ¬g = f |¬g ∧ ¬g is unsatisfiable, and thus
f ⊨ g.

Lemma 3.5.1. D(X) implies X by RUPpath, for X = [x1, . . . , xn]
p.

Proof. Let c = l1∧· · ·∧ln, with each var(li) ∈ {x1, . . . , xn}, and suppose X|c = 0,
so that l1, . . . , ln is a path to 0 in X. The number of positive literals li = xi in c
is then not equal modulo 2 to p, so the number of negative literals in the clause
¬c is not equal modulo 2 to p. Then ¬c ∈ D(X) and thus D(X) ⊢1 ¬c.

By the Shannon expansion X = (x1 ∧ X|x1) ∨ (¬x1 ∧ X|¬x1), where X|x1

and X|¬x1 are the functions expressed by the XOR clauses [x2, . . . , xn]
¬p and

[x2, . . . , xn]
p, respectively. As [xn]

0 and [xn]
1 are equivalent to just ¬xn and xn,

respectively, then |X| = 2n + 1: with x1 ≺ · · · ≺ xn, the BDD X includes one
node with variable x1, and two nodes with xi for each 1 < i ≤ n. The formula
D(X) includes 2n − 1 clauses each with n literals, thus |X| ≤ log |D(X)|.

Lemma 3.5.2. Let v the ≺-greatest variable in occurring in exactly one of X
and Y , and assume v occurs in Y . Then X|¬(X⊕Y ) = X, and Y |¬(X⊕Y ) = ¬X.

Proof. Let g = ¬(X⊕Y ) and suppose X(τ) = 1. If Y (τ) = 0, then g(τ) = 1 and
πg(τ) = τ . If instead Y (τ) = 1, then g(τ) = 0. The nearest assignment (with
respect to d) satisfying g differs only on τ(v); that is, πg(τ)(x) = τ(x) for x ̸= v,
and πg(τ)(v) = ¬τ(v). This way Y (πg(τ)) = 0, and as v does not occur in X
then still X(πg(τ)) = 1. In either case, X◦πg(τ) = X(τ) and Y ◦πg(τ) = ¬X(τ).

Next, suppose X(τ) = 0. If Y (τ) = 1 then g(τ) = 1 and πg(τ) = τ . If instead
Y (τ) = 0, then also g(τ) = 0. Again, πg(τ) need only alter the assignment of v to
satisfy Y and thus g; that is, πg(τ)(x) = τ(x) for x ̸= v, and πg(τ)(v) = ¬τ(v).
Now Y (πg(τ)) = 1, and again X(πg(τ)) = 0 is unaffected. Then X ◦ πg(τ) =
X(τ) and Y ◦ πg(τ) = ¬X(τ) holds in either case.
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Theorem 3.5.1. Suppose Π = X1, . . . , XN is a Gaussian elimination deriva-
tion from a formula F . Then there is a RUPBDD derivation from F with size
O(|Π|).

Proof. By assumption D(X1) ⊆ F , so that by Lemma 3.5.1 F implies X1 by
RUPpath. Next, for i > 1, either D(Xi) ⊆ F as well, or Xn = Xj ⊕ Xk for
j, k < n, and then Xn is RUPBDD with respect to F ∧ X1 ∧ · · · ∧ Xn−1 by
Lemma 3.5.2. Thus the sequence of BDDs representing σ = X1, . . . , XN is a
RUPBDD derivation from F . As |Xi| = 2 · si + 1 for 1 ≤ i ≤ N , then σ has size
O(|Π|).
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Redundancy by Transformation
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cation. However it is written similar to the previous chapters to be self-contained.
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Abstract. Clause elimination procedures, satisfiability-preserving methods
that remove clauses from formulas in conjunctive normal form, are an impor-
tant collection of formula simplification techniques used by tools for solving the
Boolean satisfiability (SAT) problem. Procedures that remove covered clauses,
a complex but general class of redundant clauses, are strong but rely on a less
efficient process for reconstructing solutions to the clauses it removes, as the
partial assignments called witnesses typically used for reconstruction are hard to
compute for covered clauses. This chapter shows that witnesses in the form of
transformations, functions mapping assignments to other assignments, are not
hard to compute for covered clauses and can be compactly described using graph
structures called transformation diagrams. It explains the use of transformation
diagrams for validating clause redundancy, as well as for reconstructing solutions
to clauses removed by elimination procedures.
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4.1 Introduction

Tools for solving the Boolean satisfiability (SAT) problem are becoming highly
efficient in practice, capable of handling problems from a wide range of appli-
cations, including hardware verification [24, 40, 61], cryptanalysis [73, 74, 87],
and even pure mathematics [53, 65]. Many factors play a role in the success
of modern SAT solvers, including clever search algorithms and expertly engi-
neered software, as well as the development of techniques and proof systems
that take advantage of redundancy-based reasoning (for example, [50, 54, 55],
see also [43]). In general, these are methods that alter the formula to be solved,
such as by adding or removing clauses, while preserving whether it is satisfiable,
though without necessarily preserving its set of solutions.

Clause elimination procedures, such as blocked clause elimination [59, 67],
form an important set of redundancy-based methods. Employed before and
throughout solving, these procedures can be crucial to solving problems derived
from practical application areas [47, 54]. Covered clause elimination (CCE) [48]
is a powerful technique that identifies and removes so-called covered clauses, a
generalized form of blocked clauses, and has been implemented in a number of
SAT solving tools [12, 13, 34, 70].

As with similar clause elimination methods, CCE can alter a formula’s satisfy-
ing assignments, so that solutions found after removing clauses may not satisfy
the original formula. The standard approach to repairing solutions after elimi-
nation is to record, for each removed clause C, a redundancy witness: a partial
assignment, often no larger than C itself, that can replace part of the solution
to ensure C is satisfied as well [51, 52]. However, CCE utilizes a more complex
solution reconstruction process that can, for each C, involve multiple steps and
require quadratic space [54, 60].

Witnesses exist in theory for covered clauses, as for all redundant clauses [51],
but they may be large and difficult to produce. In some cases, witnesses for cov-
ered clauses must include satisfying assignments for an arbitrarily large portion
of the surrounding formula; this result that was instantiated to show that even
propagation redundancy (PR), a very general redundancy property at the heart
of strong proof systems for SAT [51], does not capture covered clauses [8]. As
deciding whether a clause is covered is simpler than solving formulas in general,
this suggests that the partial assignment structure used for redundancy witnesses
is not flexible enough for some classes of redundant clauses.

Recently, alternative witness structures that generalize partial assignments
have been proposed. While partial assignments can be thought of as mapping
variables to truth values, Buss and Thapen, for example, define substitution
redundancy (SR) by using substitutions, which extend partial assignments by
allowing variables to be mapped also to literals [20]. Transformations, functions
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that map assignments to assignments, were used in an abstract way to discuss
redundancy properties for non-clausal constraints [7].

This chapter demonstrates that transformations are not only useful in the
abstract, but in fact provide a general and intuitive approach to redundancy.
Graph structures called transformation diagrams, similar to Binary Decision Di-
agrams (BDDs) [3, 17, 68], are described and shown to be a convenient structure
for representing and working with transformations. We prove that there exists
a simple transformation diagram for any covered clause C that requires space
linear in the size of the covering extension of C.

The remainder of this chapter is organized as follows. Section 4.2 describes nec-
essary symbols and terminology. Section 4.3 introduces transformation diagrams
and their use, while Section 4.4 demonstrates their connection to redundancy.
Section 4.5 describes witnesses for covered clauses, and Section 4.6 concludes.

4.2 Preliminaries

An assignment is a function τ : V → B, where V is a set of variables and
B = {0, 1} is the set of Boolean truth values. A Boolean function is a function
f : BV → B, where BV is the set of all possible assignments from V to B. A
Boolean function f is satisfiable if f(τ) = 1 for some τ ∈ BV , otherwise f is
unsatisfiable. A transformation is a function γ : BV → BV , mapping assignments
to assignments. The identity transformation is ι, so that ι(τ) = τ for all τ .

Literals, clauses, and formulas are defined as usual in SAT literature. The
resolvent of clauses l∨C and ¬l∨D upon l is the clause l∨C⊗l¬l∨D = C∨D.
The variable of a literal l is written var(l); for instance, var(¬x) = x. A literal l
is negative if l = ¬var(l), and positive if l = var(l). Clauses can be represented
by the set of their literals, and formulas by the set of their clauses. Unless
otherwise stated, formulas are assumed to be in conjunctive normal form.

A partial assignment σ is a set of literals such that if l ∈ σ then ¬l ̸∈ σ; that is,
σ is non-contradictory. Partial assignments can be composed with assignments
τ : if x ∈ σ then τ ◦ σ(x) = 1, while if ¬x ∈ σ then τ ◦ σ(x) = 0, otherwise
x,¬x ̸∈ σ and τ ◦ σ(x) = τ(x). Similarly if ρ and σ are partial assignments then
ρ◦σ = (ρ\{l | ¬l ∈ σ})∪σ. For a Boolean function f and partial assignment σ,
the application of σ to f is written f |σ, referring to the function f |σ(τ) = f(τ ◦σ).
This way the application of σ to a clause C is the clause C|σ = ⊤ if σ ∩ C ̸= 0,
otherwise C|σ = {l ∈ C | ¬l ̸∈ σ}. Similarly the application of σ to a formula
is the formula F |σ = {C|σ | C ∈ F and C|σ ̸= ⊤}. When applying small σ, we
may simply write the literals in σ concatenated; for example, f |a¬bc instead of
f |{a,¬b,c}. For a variable x, the literal cofactors of f on x are f |x and f |¬x.

A Boolean function g is redundant with respect to a Boolean function f if f and
f∧g are both satisfiable, or both unsatisfiable. Redundancy is mostly considered
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in terms of clauses with respect to formulas. Heule, Kiesl, and Biere [51, 52]
showed that a clause C is redundant with respect to a formula F if and only if
there exists a partial assignment ω, called a witness, such that every assignment
satisfying F |α also satisfies F |ω, written F |α ⊨ F |ω, where α = {¬l | l ∈ C}.

If F contains a redundant clause C then C can be removed from F while
preserving satisfiability. Clause elimination procedures are formula simplifica-
tion techniques that identify and remove clauses which have some property that
ensure they are redundant. For example, a clause C is blocked, and thus redun-
dant, with respect to F if there is some l ∈ C such that, for any ¬l∨D ∈ F , the
resolvent C ∨D is tautological [59, 67].

Certain procedures, such as blocked clause elimination, can result in a reduced
formula which is not logically equivalent to the original formula. It is important
that assignments satisfying the original formula can be reconstructed from as-
signments satisfying the reduced formula. Given a witness ω for each redundant
clause C removed, regardless of the clause elimination procedure applied, the
reconstruction function [32, 60] can be used to achieve an assignment satisfying
F . More specifically, given a sequence σ of witness-labeled clauses (ω : C), the
reconstruction function (with respect to σ) is defined as follows [32]:

Rϵ(τ) = τ, Rσ (ω:C)(τ) =

{︄
Rσ(τ) if C|τ = ⊤
Rσ(τ ◦ ω) otherwise.

A sequence of witness-labeled clauses σ is a reconstruction sequence for a set of
clauses S with respect to a formula F if Rσ(τ) satisfies F ∪S for any assignment
τ satisfying F \ S. If a witness if recorded for each clause C removed by clause
elimination, then even combinations of various procedures can be used to simplify
the formula F . Specifically, σ = (ω1 : C1) · · · (ωn : Cn) is a reconstruction
sequence for {C1, . . . , Cn} ⊆ F if each ωi is a witness for Ci with respect to
F \ {C1, . . . , Ci} [32].

4.3 Transformation Diagrams

Transformations have been used abstractly in characterizing non-clausal redun-
dancy properties. In particular, it was shown that a satisfiable Boolean function
g is redundant with respect to a Boolean function f if and only if there is a
transformation ω such that (1) g(ω(τ)) = 1 for any τ and (2) f ◦α ⊨ f ◦ω, where
α is a transformation ensuring α(τ) falsifies g, if not g(τ) = 0 already [7]. How-
ever, it was not clear how f ◦ ω could be computed or expressed in general, for
instance if f were a formula F , or even how to express ω other than by providing
a table that lists ω(τ) for each possible assignment τ .
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This section defines graph structures, similar to BDDs, that encode transfor-
mations. We show how these transformation diagrams can be used to compute
the output of a transformation given an assignment, and how to compute a for-
mula F |G equivalent to the composition of a formula F by the transformation
expressed by G.

4.3.1 Definition

One way a transformation could be described is by a binary decision tree, map-
ping each input assignment to an output assignment listed at the corresponding
leaf vertex. Decision trees can also be used to describe Boolean functions, but
in both cases this representation is typically inefficient. Directed, acyclic graphs
can define Boolean functions more compactly by allowing identical subgraphs in
such a representation to be merged, and unnecessary vertices to be removed, as
in BDDs. Transformation diagrams extend this by allowing similarities between
different output assignments to be exploited as well.

A transformation diagram is a directed, acyclic graph G with a single root,
and a single vertex of out-degree 0 called the terminal vertex. Each non-terminal
vertex in G is labeled by a Boolean variable, and each edge is labeled by a truth
value, 0 or 1. Each vertex has at most two outgoing edges, and if a vertex has
exactly two outgoing edges, the two edges have different labels. Vertices in G
with only one outgoing edge are called output vertices, as they correspond to
changes to the input assignment present in the output assignment.

Definition 4.3.1. A transformation diagram is a connected, directed, and
acyclic graph G with the following properties:

1. G has a single root vertex, written G.root,

2. each vertex in G has out-degree at most two,

3. each non-terminal vertex v is labeled by a Boolean variable, written v.var,
and each edge by a truth value 0 or 1,

4. no vertex has two outgoing edges with the same label, and

5. if π = {(v1, v2), . . . , (vn−1, vn)} is a path in G and vi.var = vj .var for some
i and j, with i < j, then vj is an output vertex and vi is not an output
vertex.

We use specific terms and symbols in reference to transformation diagrams. The
set of variables occurring as vertex labels in G is var(G). For a vertex v ∈ V ,
we write v.lo (respectively, v.hi) to refer to the vertex v′ such that (v, v′) ∈ E
and the label of (v, v′) is 0 (respectively, 1). Further, for each edge in a diagram
we associate a literal, the variable of which is given by the starting vertex, and
is positive or negative depending on the label of the edge.
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Definition 4.3.2. For an edge (v, v′) ∈ E, the edge literal of (v, v′) is the literal
L(v, v′) = v.var if the label of (v, v′) is 1, otherwise L(v, v′) = ¬(v.var).

The definition of transformation diagrams does not enforce an order on the
variable labels occurring in G. However, it ensures that a path does not have two
vertices with the same variable label, unless the vertex occurring farther from the
root in the path is an output vertex. This restriction simplifies the presentation
of the recurrences in the remainder of this section.

4.3.2 Apply and the Transformation of a Diagram

A transformation diagram G defines a transformation γG in the following way.

Definition 4.3.3. Let G = (V,E) be a transformation diagram and τ an as-
signment defined on var(G). Then γG(τ) = Apply(τ,G.root), where

Apply(τ, v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ if v is terminal
Apply(τ ◦ {L(v, v′)}, v′) if v is an output vertex,

with (v, v′) ∈ E

Apply(τ, v.hi) if τ(v) = 1

Apply(τ, v.lo) otherwise.

The recurrence Apply is guided through the diagram G by τ , with output ver-
tices applying changes until reaching the terminal vertex, at which the resulting
assignment is γG(τ). In other words, any assignment τ , defined on var(G), cor-
responds to a unique path πτ from G.root to the terminal vertex. At any vertex
v with two outgoing edges, the path πτ includes the edge labeled by the value of
τ(v.var). Notice that if πτ does not include an output vertex with the label x,
then γG(τ)(x) = τ(x).

A simple transformation diagram G, and table listing γG(τ) for each τ , are
shown in Figure 4.1. Notice there is a transformation diagram G for any γ; for
example, G could be constructed from a complete binary tree over the variables
in the domain of γ, appending output vertices as needed at each leaf.

The example below describes diagrams for a common set of transformations:
composing τ by a fixed partial assignment σ.

Example 4.3.1. Suppose γ is the composition of an input assignment by a given
partial assignment σ = {l1, . . . , ln}; that is, γ(τ) = τ ◦ σ. We can construct a
diagram G = (V,E) for γ as follows. First, V consists of the terminal vertex
⊤, as well as a vertex vi for each li in σ, such that vi.var = var(li). Then
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn,⊤)}, where each edge (vi, vj) is labeled
so that L(vi, vj) ∈ σ; that is, if vi.var ∈ σ then the label of (vi, vj) is 1, otherwise
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a

b a

c

⊤

τ(a) τ(b) τ(c) γG(τ)(a) γG(τ)(b) γG(τ)(c)

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 0 1 0
1 1 1 0 1 0

Figure 4.1: An example transformation diagram G is shown on the left. The
associated transformation γG is shown explicitly by the table on the right. Similar
to BDDs, edges labeled by 0 are indicated by dashed lines, edges labeled by 1
are solid, and the terminal vertex is labeled ⊤.

¬(vi.var) ∈ σ and the label of (vi, vj) is 0. Notice that each non-terminal vertex
vi in G is an output vertex.

4.3.3 Composing Functions by Transformations with Comp

Transformations are useful in that they can be composed with Boolean functions.
The remainder of this section describes how to compute, given a diagram G and
a Boolean function f , the Boolean function f ◦ γG. We provide a recurrence
Comp which returns an expression equivalent to the composition of f by γG.
Importantly, for a formula F , the expression returned by Comp is easy to convert
to conjunctive normal form to get a formula equivalent to this composition,
written F |G.

The evaluation of Comp is similar to BDD operations for computing generalized
cofactors [26, 27, 28]. At a high level, an output vertex v in a transformation
diagram imposes the edge literal L(v, v′), for (v, v′) ∈ E, as a literal cofactor
on the function, while a non-output vertex v ̸= ⊤ splits the function to include
recursive calls on v.lo and v.hi. These are then combined as in the dual form of
the Shannon expansion of a function f ; that is, f = (¬x ∨ f |x) ∧ (x ∨ f |¬x).

Comp(f, v, π) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f |π if v is terminal
Comp(f |L(v,v′), v′, π) if v is an output vertex,

with (v, v′) ∈ E

(x ∨ Comp(f, v.lo, π ∪ {¬x})) otherwise.
∧ (¬x ∨ Comp(f, v.hi, π ∪ {x}))
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An example computation of a composed function f ◦ γG using Comp is below.

Example 4.3.2. Let G be the transformation diagram from Figure 4.1. We
refer to the vertices of G as v0, v1, v2, v3,⊤ with G.root = v0, so that v0.var = a,
with v0.lo = v1 and v0.hi = v2; thus v1.var = b, v2.var = a, and v3.var = c. Then
for any Boolean function f :

Comp(f, v0, ∅) = (a ∨ Comp(f, v1, {¬a})) ∧ (¬a ∨ Comp(f, v2, {a}))
= (a ∨ Comp(f |b,⊤, {¬a})) ∧ (¬a ∨ Comp(f |¬a, v3, {a}))
= (a ∨ f |¬ab) ∧ (¬a ∨ Comp(f |¬a¬c,⊤, {a}))
= (a ∨ f |¬ab) ∧ (¬a ∨ f |¬a¬c).

The correctness of Comp remains to be proven: specifically, that

f ◦ γG = Comp(f,G.root, ∅).

We approach this by considering the function that Comp computes at each ver-
tex in a transformation diagram G. To be precise, for a vertex v in G let γv
refer to the transformation γv(τ) = Apply(τ, v); that is, γv is the transformation
corresponding to the subgraph of G that has v as a root, so that γG = γG.root.
The following proposition relates Comp and γv, and from it the correctness of
Comp follows as a direct corollary.

Proposition 4.3.1. Let v be a vertex in a transformation diagram G, and f
be a Boolean function. Further, let π be a partial assignment comprising the
edge literals from non-output vertices along any path from G.root to v. Then
Comp(f, v, π)(τ) = f(γv(τ ◦ π)) for any assignment τ .

Proof. By induction. As a base case, if v is the terminal vertex ⊤, then γ⊤
is the identity transformation ι. By definition Comp(f, v, π) = f |π, so that
f |π(τ) = f(τ ◦ π) = f(ι(τ ◦ π)) for any τ .

Now let v be a non-terminal vertex, with v.var = x. Suppose that v is an
output vertex, so that γv(τ) is Apply(τ, v) = Apply(τ ◦ {L(v, v′)}, v′); in other
words, γv(τ) = γv′(τ ◦ {L(v, v′)}). Yet x does not occur in the subgraph of G
having v′ as a root, which means that γv′(τ(x)) = τ(x) for any τ . Consequently,
γv(τ) = γv′(τ ◦ {L(v, v′)}) = γv′(τ) ◦ {L(v, v′)} as var(L(v, v′)) = x. Then
also f(γv(τ)) = f(γv′(τ) ◦ {L(v, v′)}) = f |L(v,v′)(γv′(τ)). As v is an output
vertex, Comp(f, v, π) = Comp(f |L(v,v′), v′, π), and by the inductive hypothesis,
Comp(f |L(v,v′), v′, π)(τ) = (f |L(v,v′) ◦ γv′)(τ ◦ π) = f(γv(τ ◦ π)).
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Next suppose v is not an output vertex. First, notice that π does not contain x
or ¬x, so π∪{x} and π∪{¬x} are both partial assignments; that is, they do not
include contradictory literals. The following hold by the inductive hypothesis:

Comp(f, v.lo, π ∪ {¬x})(τ) = f(γv.lo(τ ◦ (π ∪ {¬x})))
Comp(f, v.hi, π ∪ {x})(τ) = f(γv.hi(τ ◦ (π ∪ {x})))

We show that for every assignment τ , the value f(γv(τ ◦ π)) is equivalent to

(x ∨ f(γv.lo(τ ◦ (π ∪ {¬x})))) ∧ (¬x ∨ f(γv.hi(τ ◦ (π ∪ {x})))) (∗)

which proves Comp(f, v, π) = f(γv(τ ◦ π)).
Suppose τ(x) = 0, so that (∗) is equivalent to f(γv.lo(τ ◦ (π ∪ {¬x}))). As

x ̸∈ π then (τ ◦ (π ∪{¬x}))(x) = 0, so γv.lo(τ ◦ (π ∪{¬x})) = γv(τ ◦ (π ∪{¬x})).
Further, as x ̸∈ π and τ(x) = 0, also γv(τ ◦ (π ∪ {¬x})) = γv(τ ◦ π). Therefore
(∗) is equivalent to f(γv(τ ◦ π)).

Finally suppose τ(x) = 1. Then (∗) becomes f(γv.hi(τ ◦(π∪{x}))). As ¬x ̸∈ π,
then γv.hi(τ ◦ (π∪{x})) = γv(τ ◦ (π∪{x})) since (τ ◦ (π∪{x}))(x) = 1. Because
¬x ̸∈ π and τ(x) = 1 as well, then also γv(τ ◦ (π ∪ {x})) = γv(τ ◦ π). Therefore
(∗) is equivalent to f(γv(τ ◦ π)) in this case also.

Corollary 4.3.1. Let G be a transformation diagram for γG and f a Boolean
function. Then f ◦ γG = Comp(f,G.root, ∅).

Notice that if the diagram G is constructed from a partial assignment σ, as
described in Example 4.3.1, then G includes only output vertices, so Comp simply
applies each literal in σ as a literal cofactor to f . This means, for a formula F ,
the result of Comp(F,G.root, ∅) is equivalent to F |σ.

In fact, the recurrence Comp is designed so that, for a formula F , it is easy
to translate the result of Comp(F, v, π) into CNF. This can be seen inductively.
If v is the terminal vertex then Comp returns the formula F |π for a partial
assignment π. If v is not terminal but is an output vertex, the computation of
Comp continues with the formula F |L(v,v′).

Now, consider the third case in the definition of Comp, and suppose both
F0 = Comp(f, v.lo, π ∪ {¬x}) and F1 = Comp(f, v.hi, π ∪ {x}) are formulas.
Then the result returned by Comp can be easily translated as⋀︂

D∈F0

(x ∨D) ∧
⋀︂

D∈F1

(¬x ∨D).
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For instance, recall the result in Example 4.3.2. If f is a formula F , this result
is equivalent to the formula⋀︂

D∈F |¬ab

(a ∨D) ∧
⋀︂

D∈F |¬a¬c

(¬a ∨D).

We write F |G to refer to this CNF translation of Comp(F,G.root, ∅). The
formula F |G can be described more directly by considering the paths taken during
the computation of Comp. Given a path π in G, three sets of literals can be
constructed:

LI(π) = {L(u, u′) | (u, u′) ∈ π and u is not an output vertex}
LO(π) = {L(v, v′) | (v, v′) ∈ π and v is an output vertex}
L(π) = (LI(π) \ {l | ¬l ∈ LO(π)}) ∪ LO(π).

Each of these sets consists of edge literals occurring along π, where L(π) in
particular comprises the literals LO(π) from edges leaving output vertices, as
well as any other edge literals along π not contradicted by a literal in LO(π).
Then each clause in F |G has the form

(︂⋁︁
l∈LI(π)

¬l
)︂
∨D, where D ∈ F |L(π), for

some path π in G. As written, Comp descends each path in G until reaching the
terminal vertex, so that the following holds.

Proposition 4.3.2. If F is a formula, G a transformation diagram, and ΠG the
set of paths from G.root to the terminal vertex, then:

F |G =
⋀︂

π∈ΠG

⎛⎝ ⋀︂
D∈F |L(π)

⎛⎝⎛⎝ ⋁︂
l∈LI(π)

¬l

⎞⎠ ∨D

⎞⎠⎞⎠ ≡ F ◦ γG.

4.4 Diagrams As Witnesses

The previous section defined transformation diagrams, and detailed how they
can be used to transform input assignments and be composed with Boolean
functions. Importantly, it defined the formula F |G, which can be computed
using Comp from the formula F and transformation diagram G. This section
focuses on the use of transformation diagrams as redundancy witnesses.

4.4.1 Transformations and Redundancy

Previously, the redundancy of a Boolean function g with respect to a Boolean
function f was characterized by using two transformations α and ω [7], analo-
gous to the partial assignments α and ω used to characterize clause redundancy
by Heule, Kiesl, and Biere [51, 52]. In both cases, α is constructed to negate
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the function g, or clause C, while ω must satisfy it; that is, g ◦ ω is the con-
stant function that returns the Boolean value 1, or C|ω = ⊤. A simplification
of this result for formulas and clauses was provided by Gocht and Nordström,
who require only that F ∧ ¬C ⊨ (F ∧ C)|ω [38]. Further, for the non-clausal
characterization, Gocht has suggested1 it may not be strictly necessary that the
transformation α be constructed so that g ◦ α is unsatisfiable.

Motivated by these results, we provide an intuitive and straightforward char-
acterization of redundancy which uses only a single transformation.

Proposition 4.4.1. Let f and g be a Boolean functions, where g is satisfiable.
Then g is redundant with respect to f if and only if there is a transformation γ
such that f ⊨ (f ∧ g) ◦ γ.

Proof. (⇐) Suppose f ⊨ (f ∧ g) ◦ γ for a transformation γ. If τ is an assignment
satisfying f , then γ(τ) satisfies f ∧ g. If there is no such τ then f is unsatisfiable
and so is f ∧ g. Thus g is redundant with respect to f .

(⇒) Suppose g is redundant with respect to f ; we aim to produce a transfor-
mation γ such that f ⊨ (f ∧g)◦γ. If f is unsatisfiable then any transformation γ
is suitable. If f is satisfiable, then f ∧g is as well and has a satisfying assignment
τ∗. Let γ be a transformation such that γ(τ) = τ∗ for all τ that satisfy f . Then
f ⊨ (f ∧ g) ◦ γ.

The following example demonstrates this concretely. It constructs, for any re-
dundant clause C with a partial assignment witness ω, a transformation diagram
G such that γG acts as a witness for C in the sense of the previous proposition;
that is, F ⊨ (F ∧ C)|G, or equivalently, F ⊨ F |G ∧ C|G.

Example 4.4.1. Suppose C = l1 ∨ · · · ∨ lm is redundant with respect to F
and ω = {k1, . . . , kn} is a partial assignment such that F |α ⊨ F |ω, where also
α = {¬l1, . . . ,¬lm}. Let U = {u1, . . . , um} and V = {v1, . . . , vn} be sets of
vertices (U ∩ V = ∅) where ui.var = var(li) for 1 ≤ i ≤ m and vj .var = var(kj)
for 1 ≤ j ≤ n. Then U contains a vertex for each literal in α, and V contains
a vertex for each literal in ω. Define two sets of edges, with ⊤ denoting the
terminal vertex:

Eα = {(ui, ui+1) | 1 ≤ i < m} ∪ {(ui,⊤) | 1 ≤ i ≤ m} ∪ {(um, v1)}
Eω = {(vj , vj+1) | 1 ≤ j < n} ∪ {(vn,⊤)}

The edges in Eα are labeled such that L(ui,⊤) = li for all 1 ≤ i ≤ m, and
L(ui, ui+1) = ¬li for all 1 ≤ i < m, and further L(um, v1) = ¬lm. The edges in
Eω are labeled such that L(vj , vj+1) = kj for all 1 ≤ j < n and L(vn,⊤) = kn.

1Personal communication, March 2021.
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l1

l2

lm

k1 k2 kn ⊤

· · ·

· · ·

Figure 4.2: If C = l1 ∨ · · · ∨ lm is redundant with respect to a formula F , with
partial assignment witness ω = {k1, . . . , kn}, then G above is a transformation
diagram witness for C with respect to F ; that is, F ⊨ F |G and C(γG(τ)) = 1 for
all τ . Note that G, as shown, assumes all literals in C and ω are positive; if a
literal occurs negatively, the labels on its outgoing edge(s) should be swapped.

Let G = (U ∪ V ∪ {⊤}, Eα ∪ Eω), with G.root = u1. Figure 4.2 provides an
illustration of G. We show that G defines a transformation which is a witness
for C with respect to F .

First, let τ be an assignment assumed to be defined on var(G). If τ satisfies
C then the path πτ in G corresponding to τ includes no output vertices, so
γG(τ) = τ satisfies C. On the other hand, if τ falsifies C then πτ = π∗, where

π∗ = {(u1, u2), (u2, u3), . . . , (um−1, um), (um, v1), (v1, v2), . . . , (vn−1, vn), (vn,⊤).

Then γG(τ) satisfies each literal in ω; as ω is witness for C then γG(τ) satisfies
C as well. Therefore C(γG(τ)) = 1 for all τ ; that is, C|G = ⊤.

Next, we show that F ⊨ F |G. For p ≤ m, define the partial assignment
αp = {¬li | 1 ≤ i ≤ p− 1} ∪ {lp}. Then the formula F |G is

⋀︂
1≤p≤m

⎛⎝ ⋀︂
D∈F |αp

⎛⎝⎛⎝ ⋁︂
1≤i≤p−1

li

⎞⎠ ∨ ¬lp ∨D

⎞⎠⎞⎠ ∧
⋀︂

D∈F |ω

⎛⎝⎛⎝ ⋁︂
1≤j≤k

lj

⎞⎠ ∨D

⎞⎠ .

More simply, each clause in F |G has the form L ∨ D, where D ∈ F |αp for
some p, or D ∈ F |ω. We show that F ⊨ L ∨ D for each clause L ∨ D in F |G.
First suppose D ∈ F |αp , which means that L = l1 ∨ · · · ∨ lp−1 ∨ ¬lp. Then
F ∧ ¬L ⊨ F |αp , so F ∧ ¬L ⊨ D and thus F ⊨ L ∨ D. On the other hand,
suppose D ∈ F |ω, which means L = C. Then F ∧¬L ⊨ F |α, and by assumption
F |α ⊨ F |ω, so F |α ⊨ D. Thus F ∧ ¬L ⊨ D, so F ⊨ L ∨D.
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We extend the term “witness” to also refer to transformation diagrams, so that
a transformation diagram G such that F ⊨ (F ∧C)|G is a witness for the clause
C with respect to F .

4.4.2 Checking F ⊨ F |G
The previous example also illustrates a useful observation about validating that
the implication F ⊨ F |G holds between the original formula F and the composed
formula F |G, for a transformation diagram G: paths in G containing no output
vertices do not need to be checked. More precisely, we need only show F entails
the clauses

(︂⋁︁
l∈LI(π)

¬l
)︂
∨D in F |G for paths π which include output literals,

so that LI(π) ̸= L(π).
The following proposition proves that this observation holds in general.

Proposition 4.4.2. Let F be a formula, G a transformation diagram. Further
let Π∗

G be the set of paths π in G such that LI(π) ̸= L(π). Then F ⊨ F |G if and
only if

F ⊨
⋀︂

π∈Π∗
G

⎛⎝ ⋀︂
D∈F |L(π)

⎛⎝⎛⎝ ⋁︂
l∈LI(π)

¬l

⎞⎠ ∨D

⎞⎠⎞⎠ .

Proof. (⇒) Let ΠG be the set of all paths in G as before, so that Π∗
G ⊆ ΠG.

Certainly if F ⊨ F |G then the implication above holds.
(⇐) Suppose that π ∈ ΠG \ Π∗

G, and therefore LI(π) = L(π). Notice that
F ∧

⋀︁
l∈LI(π)

l ⊨ F |LI(π), which means F ⊨
(︂⋁︁

l∈LI(π)
¬l
)︂
∨D for all D ∈ F |L(π).

Thus if the implication above holds then also F ⊨ F |G.

We illustrate this further by providing a concrete transformation diagram, and
showing that it is a witness for a redundant clause C.

Example 4.4.2. Let C = (a ∨ b), and

F = (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ x) ∧ (¬c ∨ ¬x ∨ y) ∧ (¬x ∨ y) ∧ (¬b ∨ ¬y).

We show that C is redundant with respect to F by providing a transformation
diagram G, shown in Figure 4.3, such that F ⊨ (F ∧ C)|G. First, notice that
for any τ , the assignment γG(τ) satisfies C: if τ already satisfies a or b then
γG(τ) = τ , otherwise γG(τ) satisfies a. Consequently C ◦ γG = C|G = ⊤.
Next, to show F ⊨ F |G notice there are only two paths in π ∈ Π∗

G such that
LI(π) ̸= L(π). Thus F ⊨ F |G if

F ⊨
⋀︂

D∈F |a¬bx

(a ∨ b ∨ ¬x ∨D)
⋀︂

D∈F |a¬bxy

(a ∨ b ∨ x ∨D) .
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a

b

x

y x a ⊤

Figure 4.3: A transformation diagram which is a witness for the clause in Exam-
ple 4.4.2

Simplifying these conjunctions on the right-hand side gives:⋀︂
D∈F |a¬bx

(a ∨ b ∨ ¬x ∨D) = (a ∨ b ∨ ¬x ∨ ¬c ∨ y) ∧ (a ∨ b ∨ ¬x ∨ y)

⋀︂
D∈F |a¬bxy

(a ∨ b ∨ x ∨D) = ⊤

Each of the clauses above are subsumed by clauses in F , so the implication holds.
Therefore F ⊨ (F ∧ C)|G, which means C is redundant with respect to F .

4.4.3 Solution Reconstruction

We consider the use of transformation diagram witnesses for solution reconstruc-
tion. First, transformation diagrams can be used in the standard reconstruction
function alongside partial assignment witnesses. This can be done by generaliz-
ing witness-labeled clauses to allow either transformation diagram witnesses, or
partial assignment witnesses as usual.

More specifically, we can define the combined reconstruction function Rcomb

with respect to a sequence σ as follows, and show that it can be used for solution
reconstruction.

Rcomb
ϵ (τ) = τ, Rcomb

σ (ω:C)(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rcomb

σ (τ) if C|τ = ⊤
Rcomb

σ (τ ◦ ω) if ω is a partial
assignment

Rcomb
σ (Apply(τ, ω.root)) otherwise.

Proposition 4.4.3. Let F be a formula, and τ an assignment satisfying the
formula F \{C1, . . . , Cn}. Let also σ = (ω1 : C1) · · · (ωn : Cn) be a sequence such
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that, for each i, either ωi is a partial assignment witness, or ωi is a transforma-
tion diagram witness, for the clause Ci with respect to F \ {C1, . . . , Ci}. Then
Rcomb

σ (τ) satisfies F .

Proof. By induction on n, the length of σ. As a base case, if n = 0 then σ = ϵ
is empty and Rcomb

ϵ (τ) = τ satisfies F \ ∅ = F by assumption.
For the inductive step, let σ = σ′ · (ωn : Cn), so that σ′ has length n− 1. Let

also F ′ = F \ {C1, . . . , Cn}. There are two cases:

1. τ satisfies Cn, and thus τ satisfies F ′ ∧Cn = F \ {C1, . . . , Cn−1}. Then by
the inductive hypothesis Rcomb

σ (τ) = Rcomb
σ′ (τ) satisfies F .

2. τ falsifies Cn. As stated ωn is either a partial assignment witness for Cn

or a transformation diagram witness for Cn. If ωn is a partial assign-
ment, then τ ◦ωn satisfies F ′ ∧Cn = F \ {C1, . . . , Cn−1}. By the inductive
hypothesis Rcomb

σ (τ) = Rcomb
σ′ (τ ◦ωn) satisfies F . Otherwise ωn is a trans-

formation diagram, so that F ′ ⊨ (F ′ ∧Cn)|ωn . This means the assignment
Apply(τ, ωn.root) satisfies F ′∧Cn = F \{C1, . . . , Cn−1}. In this case as well,
the inductive hypothesis ensures Rcomb

σ (τ) = Rcomb
σ′ (Apply(τ, ωn.root)) sat-

isfies F .

However, the use of transformation diagrams allows a more straightforward
definition of the reconstruction function. If ω is a partial assignment witness for
a clause C, then τ ◦ ω is only guaranteed to satisfy C if τ falsifies C. On the
other hand, if ω is a transformation diagram witness for C with respect to F ,
then γω(τ) satisfies F ∧ C for any τ satisfying F . Intuitively, the case split in
the body of the reconstruction function can be handled by Apply on ω.

In this sense, let σ be a sequence of witness-labeled clauses (ω : C) such that
ω is a transformation diagram witness for C. We define the function RTD, with
respect to σ, as follows:

RTD
ϵ (τ) = τ, RTD

σ (ω:D)(τ) = Apply(τ, ω.root).

The following proposition shows that RTD can be used to reconstruct solutions
after removing redundant clauses.

Proposition 4.4.4. Let F be a formula, and τ an assignment satisfying the
formula F \{C1, . . . , Cn}. Let also σ = (ω1 : C1) · · · (ωn : Cn) be a sequence such
that each ωi is a transformation diagram witness for the clause Ci with respect
to F \ {C1, . . . , Ci}. Then RTD

σ (τ) satisfies F .

Proof. By induction on n, the length of σ. As a base case, if n = 0 then σ = ϵ
is empty and RTD

ϵ (τ) = τ satisfies F \ ∅ = F by assumption.
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For the inductive step, let σ = σ′ · (ωn : Cn), so that σ′ has length n − 1.
Let also F ′ = F \ {C1, . . . , Cn}. Then F ′ ⊨ (F ′ ∧ Cn)|ωn , as ωn is a transfor-
mation diagram witness for Cn with respect to F ′. This means the assignment
Apply(τ, ωn.root) satisfies F ′ ∧ Cn = F \ {C1, . . . , Cn−1}. By the inductive hy-
pothesis, then RTD

σ (τ) = RTD
σ′ (Apply(τ, ωn.root)) satisfies F .

4.5 Witnesses for Covered Clauses

This section describes transformation diagrams which are witnesses for covered
clauses. We begin by reviewing covered literals and the covered clause property,
as introduced by Heule, Järvisalo, and Biere [48].

4.5.1 Covered Clauses Summary

The set of resolution candidates of C in F upon a literal l, written RC(F,C, l),
is defined as the collection of clauses in F with which C has a non-tautological
resolvent upon l.

RC(F,C, l) = {C ′ ∨ ¬l ∈ F | C ′ ∨ ¬l ⊗l C ̸≡ ⊤}.

The resolution intersection of C in F upon l, written RI(F,C, l), are the literals
occurring in all of the resolution candidates, apart from ¬l:

RI(F,C, l) =
(︁⋂︂

RC(F,C, l)
)︁
\ {¬l}.

Any literals in RI(F,C, l) are said to be covered by l, and can be added to C while
preserving satisfiability: the partial assignment ω = {¬k | k ∈ C and k ̸= l}∪{l}
is a witness for C with respect to F ∧ (C ∪ RI(F,C, l)). A clause C is covered
in a formula F if iteratively extending C by adding covered literals results in a
clause CEXT that is blocked in F . If C is covered in F , then C is redundant with
respect to F [48].

A generalization of covered clauses also allows the extension of C by adding
asymmetric literals, where a literal k is asymmetric to C in F if there exists
a clause C ′ ∨ ¬k ∈ F with C ′ ⊆ C. Adding asymmetric literals to C is in
fact model-preserving, so that F and (F \ {C}) ∧ (C ∨ k) are equivalent, for
any k asymmetric to C [47]. Asymmetric literals added to a clause C will not
themselves cover new literals, but can allow other literals in C to cover new
literals or to block C. A clause C is asymmetrically covered in F if the iterative
extension of C by the addition of both covered literals and asymmetric literals is
blocked in F , or subsumed; that is, the extension CEXT ⊆ C ′ for some C ′ ∈ F .
If C is asymmetrically covered in F , then C is redundant with respect to F [48].
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Definition 4.5.1. A clause C ′ is an ACC extension of C with respect to F if C ′

can be constructed from C by the iterative addition of covered and asymmetric
literals. If some ACC extension of C is blocked or subsumed in F , then C is an
asymmetric covered clause (ACC).

Unlike similar procedures, such as blocked clause elimination [59, 67], the pro-
cedure for identifying asymmetrically covered clauses does not provide witnesses
for these clauses. Instead, it produces a sequence σ of witness-labeled clauses.
The final element in σ provides a witness for the clause CEXT, an ACC extension
of C, with respect to F . For any other (ω : D) ∈ σ the partial assignment ω
is a witness for D with respect to the formula F ∧ (D ∪ RI(F,D, l)) for some
l ∈ D. Thus, using the reconstruction function, the sequence σ can be used to
reconstruct solutions to F ∧ C from solutions to F [8, 48]. This sequence σ can
require space quadratic in the length of the extended clause [8].

However, any clause C that is asymmetrically covered in a formula F is re-
dundant with respect to F , so a single partial assignment ω satisfying C such
that F |α ⊨ F |ω surely exists, where α = {¬l | l ∈ C}. Specifying such a partial
assignment ω poses a challenge for covered clauses; specifically, in some cases ω
must satisfy other clauses in F that in fact can be chosen arbitrarily. This is
demonstrated by the following example, where producing a partial assignment
witness ω for C requires finding a satisfying assignment to a possibly complex
formula G [8].

Example 4.5.1 (Barnett, Cerna, and Biere [8]). The clause C = k∨ l is covered
in the formula:

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨D1) ∧ · · · ∧ (x ∨Dn) ∧
(y ∨D′

1) ∧ · · · ∧ (y ∨D′
n).

For each i, the clauses Di and D′
i are variable-renamed copies of one-another,

and do not include any of the variables k, l, x, or y. If G = D1 ∧ · · · ∧ Dn is
unsatisfiable, then so are F and F |α, which means any ω is a witness for C. On
the other hand, if G is satisfiable then in fact ω must satisfy either the formula
G itself, or the formula G′ = D′

1 ∧ · · · ∧ D′
n. Either way, any witness ω for C

with respect to F indicates a how a satisfying assignment can be constructed for
the formula G.

4.5.2 Diagrams for Covered Clauses

While partial assignment witnesses present this difficulty for covered clauses,
there are simple and intuitive transformation diagrams that are witnesses for
covered clauses. For instance, in Example 4.4.2 the clause C is covered with
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respect to the formula F , and a transformation diagram witness for it is provided
and shown to be correct.

In the remainder of this section, we demonstrate that for any clause C asym-
metrically covered in a formula F , there is a transformation diagram G such
that G is a witness for C with respect to F . The following definition provides a
detailed description of the construction of this diagram G. An example of this
construction is supplied after this definition.

Definition 4.5.2. For C = l1 ∨ · · · ∨ lm and formula F , let CEXT be an ex-
tension of C by adding covered literals and asymmetric literals. Further, let
lm+1, . . . , ln ∈ CEXT \ C be the literals in CEXT which were added as covered
literals, ordered so that if lj was added as a covered literal of li, then i < j.
If CEXT is blocked in F , then b indicates a literal lb blocking CEXT. If CEXT
is instead subsumed in F , then b = n. We define the transformation diagram
G(C,CEXT, b) as follows. First, let V be the set of vertices

V = {vi | 1 ≤ i ≤ n} ∪ {ui | 1 ≤ i ≤ n}.

Each vertex in V is labeled by the variable of the corresponding literal; that is,
for each literal li ∈ CEXT there are distinct vertices ui and vi such that their
labels are ui.var = vi.var = var(li). The root vertex is G(C,CEXT, b).root = v1
corresponding to a literal l1 ∈ C.

Next, let E = E− ∪ E+ be a collection of edges, composed of two sets. First,

E+ = {(vi,⊤) | 1 ≤ i ≤ m} ∪ {(ui,⊤) | 1 ≤ i ≤ m} ∪
{(vi, uj) | lj covers li} ∪ {(ui, uj) | lj covers li}

Intuitively, E+ includes edges corresponding to the covering relationships be-
tween the literals in CEXT, as well as edges from both vi and ui to the terminal
vertex ⊤, for each literal li in the clause C.

The label of each edge in E+ matches the corresponding variable’s polarity in
CEXT. More precisely, each (vi,⊤) ∈ E+ is labeled so that L(vi,⊤) ∈ CEXT, and
likewise L(ui,⊤) ∈ CEXT for each (ui,⊤) ∈ E+. Similarly, both L(vi, uj) ∈ CEXT
for (vi, uj) ∈ E+ and L(ui, uj) ∈ CEXT for (ui, uj) ∈ E+.

Next, the set E− is defined as

E− =

{︄
{(vi−1, vi) | 2 ≤ i ≤ n} if b = n

{(vi−1, vi) | 2 ≤ i ≤ n} ∪ {(vn, ub)} otherwise.

Intuitively, E− includes a sequence of edges along the literals vi, for each literal
li in CEXT, in order.

The label of each edge in E− matches the negation of the corresponding vari-
able’s polarity in CEXT. More precisely, ¬L(v, v′) ∈ CEXT for all (v, v′) ∈ E−.
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k

l

x

y

k

l ⊤

Figure 4.4: A witness for the covered clause k ∨ l with respect to the formula F
in Example 4.5.1.

Finally, let V ′ ⊆ V be the result of removing from V any vertices with no
incoming edges, except for the root v1 ∈ V ′. Likewise,

E′ = {e ∈ E | both vertices in e belong to V ′}.

The transformation diagram is G(C,CEXT, b) = (V ′, E′).

The following example walks through the construction of the transformation
diagram G(C,CEXT, b) corresponding to the clause C and formula provided in
Example 4.5.1, show that it is a witness for C. An illustration of the resulting
graph is provided in Figure 4.4.

Example 4.5.2. Let C and F be given as in Example 4.5.1, so that C = k ∨ l
and CEXT = k ∨ l ∨ x ∨ y. Let l1 = k, l2 = l, l3 = x, and l4 = y. Both literals
l3 = x and l4 = y are blocking literals for CEXT; we choose to take b = 4.
Following Definition 4.5.2, the set V is

V = {v1, v2, v3, v4, u1, u2, u3, u4}.

The literal l1 = k covers l3 = x and l2 = l covers l4 = y, thus:

E+ = {(v1,⊤), (v2,⊤), (u1,⊤), (u2,⊤), (v3, u1), (v4, u2), (u3, u1), (u4, u2)}
E− = {(v1, v2), (v2, v3), (v3, v4)}.

The root vertex is v1 but u3 and u4 have no incoming edges, so these are removed
to result in V ′ = {v1, v2, v3, v4, u1, u2}, as well as

E′ = {(v1,⊤), (v2,⊤), (u1,⊤), (u2,⊤), (v3, u1), (v4, u2), (v1, v2), (v2, v3), (v3, v4)}.

To see that G = (V ′, E′) is a witness for C with respect to F , notice that for
every τ , the assignment γG(τ) satisfies either k or l. Therefore C◦γG = C|G = ⊤.
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Next, there are only two paths to the terminal vertex in G that include output
vertices, so to show F ⊨ F |G we must show that

F ⊨
⋀︂

D∈F |k¬lx

(k ∨ l ∨ ¬x ∨D)
⋀︂

D∈F |¬kl¬xy

(k ∨ l ∨ x ∨D) .

Simplifying these conjunctions gives:⋀︂
D∈F |k¬lx

(k ∨ l ∨ ¬x ∨D) = (k ∨ l ∨ ¬x ∨ ¬y) ∧

(k ∨ l ∨ ¬x ∨ y ∨D′
1) ∧ · · · ∧ (k ∨ l ∨ ¬x ∨ y ∨D′

n)⋀︂
D∈F |¬kl¬xy

(k ∨ l ∨ x ∨D) = (k ∨ l ∨ x ∨D1) ∧ · · · ∧ (k ∨ l ∨ x ∨Dn)

Each of these clauses are subsumed by clauses in F , so the implication holds.
Therefore F ⊨ (F ∧ C)|G, which means G is a witness for C with respect to F .

We prove now that the graph construction described in Definition 4.5.2 defines
a transformation diagram witness for any asymmetric covered clause.

Lemma 4.5.1. Let C be a clause, F a formula, and CEXT be an ACC extension
of C in F . If CEXT is blocked or subsumed in a formula F , then F ⊨ C|G, where
G = G(C,CEXT, b).

Proof. We show that if τ satisfies F , then τ satisfies C(γG(τ)). If τ satisfies a
literal li ∈ C, then πτ includes the edge (vi,⊤). This means πτ includes no edges
from output vertices, so that γG(τ) = τ satisfies li and thus C as well.

Suppose τ falsifies C but satisfies CEXT. Although {l1, . . . , ln} does not include
every literal in CEXT, it is not possible for τ to satisfy some l ∈ CEXT but falsify
each li. This is because each literal l in CEXT \ {l1, . . . , ln} is asymmetric to
CEXT: that is, F includes some clause C ′ ∨¬l for C ′ ⊆ CEXT. Thus if τ satisfies
CEXT, then it satisfies li for some m < i ≤ n.

Let i be the least value such that τ satisfies li, so that the path πτ begins with
the edges (v1, v2), . . . , (vi−1, vi). As li was added as a covered literal of some lj ,
then πτ continues with a sequence of edges from output vertices, starting with
(vi, uj) until (uk,⊤) for some k ≤ m. Moreover, the edges along this sequence
of output vertices belong to E+, which means L(uk,⊤) = lk. Therefore γG(τ)
satisfies lk and thus C.

Finally, suppose τ falsifies CEXT. Then the path πτ begins by including the
edges (v1, v2), . . . , (vn−1, vn). From there, as in the previous case, πτ includes
a sequence of edges from output vertices, ending with (uk,⊤) for some k ≤ m.
Again, the edges along this sequence of output vertices belong to E+, so that
γG(τ) satisfies the literal L(uk,⊤) = lk.
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Lemma 4.5.2. Let C be a clause, F a formula, and CEXT be an ACC extension
of C in F . If CEXT is blocked or subsumed in a formula F , then F ⊨ F |G, where
G = G(C,CEXT, b).

Proof. As in the description of G we let C = l1 ∨ · · · ∨ lm with the set of literals
{lm+1, . . . , ln} added as covered literals in CEXT. Also if CEXT is blocked in F
then b indicates a blocking literal lb, otherwise b = n.

We show F implies each clause
⋁︁

l∈LI(π)
¬l ∨ D in F |G, where D ∈ F |L(π),

and π is a path in G such that L(π) ̸= LI(π). For G in particular, this means
the path π includes at least all the edges such that {¬l | l ∈ C} ⊆ LI(π); in
other words, beginning at the root vertex v1, the path π must include the edge
(vm, vm+1) before eventually reaching the terminal ⊤.

There are two cases, depending on the path π takes from vm+1.

1. There is some k0, with m < k0 ≤ n, such that

LI(π) = {¬li | 1 ≤ i < k0} ∪ {lk0}.

In other words, the path π includes the edge (vk0 , uk1), for a literal lk1 in
CEXT that covers lk0 . From the vertex uk1 the path π includes only edges
from output vertices, so that LO(π) = {lk1 , . . . , lkp}, where each lkj covers
lkj−1

, for 1 ≤ j ≤ p.

Now let D ∈ F |L(π); we aim to show that F |LI(π) ⊨ D, which means
that F ⊨

⋁︁
l∈LI(π)

¬l∨D. Let D∗ ∈ F such that D = D∗|L(π). Notice that
D ̸= ⊤, so D∗ does not include any of the literals lkj in LO(π).

Suppose ¬lkj ∈ D∗ for some lkj ∈ LO(π). As lkj covers lkj−1
, if D∗

were in the set RC(F,C ′, lkj ) for some C ′ ⊆ CEXT, then lkj−1
∈ D∗. As

lkj ∈ L(π) for each 0 ≤ j ≤ p, this contradicts D ̸= ⊤.

Otherwise, D∗ must be excluded from the the set RC(F,C ′, lkj ) because
there is some ¬l ∈ D for some l ∈ C ′. If that literal l were in C, or added
by covered literal addition, then ¬l ∈ L(π) so that D = ⊤. If instead l was
added by asymmetric literal addition, this means F |LI(π) ⊨ ¬l, and thus
F ∧

⋀︁
l∈LI(π)

⊨ D.

In case D∗ includes none of the literals in LO(π) or the negations of
any literals in LO(π), then D also occurs in F |LI(π), thus the implication
holds.

2. There is no such k0, which means LI(π) = {¬l | l ∈ CEXT}. Then π
includes the edge (vn, ub), or the edge (vn−1, vn) if b = n, and similar to
the previous case, π includes only edges from output vertices from there
to the terminal. This means LO(π) = {lb, lk1 , . . . , lkp}, where lk1 covers lb,
and each lkj covers lkj−1

, for 1 ≤ j ≤ p.
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Again we aim to show that F |LI(π) ⊨ D for D ∈ F |L(π). Let D∗ ∈ F
such that D = D∗|L(π). As before, D ̸= ⊤ so D∗ does not include any of
the literals in LO(π). Further, if ¬lkj ∈ D∗ for some lkj ∈ LO(π) then the
implication holds by the same argument as before.

Suppose instead ¬lb ∈ D∗. First, notice that if CEXT were subsumed in F
then the implication holds, as F |LI(π) ≡ ⊥. This is because LI(π) includes
the negation of each literal in C and the negation of each covered literal
in CEXT, and further, for each li added to CEXT as an asymmetric literal,
F |LI(π) includes the unit clauses (¬li). Therefore if CEXT is subsumed
then F |LI(π) ≡ ⊥. We assume then lb blocks CEXT in F , so that ¬lb ∈ D∗

means D∗ includes the negation ¬l of another literal in l ∈ CEXT. If l
was added to CEXT as an asymmetric literal, then F |LI(π) ⊨ ¬l, and thus
F ∧

⋀︁
l∈LI(π)

⊨ D.

If l′ was not added as an asymmetric literal, and l′ ̸∈ LO(π), then
¬l′ ∈ LI(π) and moreover ¬l′ ∈ L(π); this is a contradiction as D ̸= ⊤. If
instead l′ ∈ LO(π) then l′ = lkj for some j, meaning lkj−1

∈ D, which is
again a contradiction, as this would mean D = ⊤.

The theorem below is then a direct consequence of these two lemmas.

Theorem 4.5.1. If a clause C is an asymmetric covered clause in a formula F ,
then the transformation diagram G(C,CEXT, b) is a witness for C with respect
to F .

Finally we consider the size of the graph G = G(C,CEXT, b). If the extended
clause CEXT includes N literals, then the graph G includes at most 2N vertices,
each of which has at most two outgoing edges. Thus G can be described in space
linear in N , for instance by listing all edges in G.

4.6 Conclusion

This chapter presented transformation diagrams, directed acyclic graphs for
defining transformations, and demonstrated how they can be applied to assign-
ments and composed with Boolean functions and formulas. We showed how
transformation diagrams can be used as redundancy witnesses in an intuitive
way, both for checking the redundancy of clauses and for solution reconstruction.
Importantly, compact transformation diagram witnesses for covered clauses were
described and proven correct.

The use of transformation diagrams in practice for performing solution recon-
struction is yet to be evaluated. Another direction for future work is the use of
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transformation diagrams for simplifying sequences of redundant clause additions
or eliminations. The diagrams constructed for covered clauses can be seen as a
condensed form of the standard reconstruction sequence using partial assignment
witnesses for covered literal additions, exploiting the similarities shared between
steps in this sequence. There may be other sequences of redundant clauses for
which the witnesses can be simplified in a similar way. Further it may be possible
to generalize this process, providing a way to compress reconstruction sequences,
or possibly even proofs in systems based on redundant clause addition.
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Conclusion

This thesis presented an in-depth exploration of the limits of redundancy-based
reasoning methods in SAT, and advanced approaches to redundancy to overcome
these limits. In this final chapter, we review the contributions included in this
thesis and discuss potential directions for future work.

5.1 Contributions

The contributions of this thesis are summarized below, separated by the chapter
in which they are presented.

Chapter 2: Covered Clauses Are Not Propagation Redundant

This work revisits covered clause elimination, a clause elimination procedure
based on a strong redundancy property. As this procedure had previously been
only described mathematically, it provides and proves correct an explicit algo-
rithm for deciding if a clause is asymmetrically covered with respect to a formula,
and for reconstructing solutions to formulas after removing asymmetric covered
clauses. Unlike for other redundancy properties, the reconstruction process uti-
lized by this procedure does not produce partial assignment witnesses for the
removed clauses, but uses a multi-step process for incrementally restoring so-
lutions to the removed clauses. This is more burdensome with respect to the
space required for solution reconstruction, but we prove that, even though it can
be efficiently decided whether a clause is covered, a partial assignment witness
for a covered clause can be as difficult to find as a satisfying assignment to an
arbitrary formula.

As an consequence of this result we show covered clauses are not necessarily
PR clauses, despite the generality of the PR redundancy property. Finally, we
consider the complexity of clause redundancy itself. In particular, we show that
deciding whether a clause is redundant with respect to a formula is a complete
problem for the complement of the complexity class DP, which was originally de-
fined to classify problems that are hard for both NP and co-NP, but are seemingly
not complete for either.
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Chapter 3: Non-Clausal Redundancy Properties

In this chapter, we extend the ideas about clause redundancy, used in the design
of formula simplification procedures and proof systems for SAT, to characterize
redundancy of Boolean functions in general. We show that this general form of
redundancy provides a framework for defining specific non-clausal redundancy
properties, and in particular devise properties for the redundancy of functions
expressed by Binary Decision Diagrams (BDDs). The properties PRBDD and
RUPBDD, defined in this chapter, are shown to easily express Gaussian elimi-
nation reasoning, an efficient SAT solving technique capable of quickly solving
formulas that encode exclusive-or (XOR) constraints Importantly, this shows the
strength of these properties over their clausal analogs: proof systems based on
PRBDD and RUPBDD can make any inferences possible in systems based on PR
and RUP, respectively, but it is not easy to express XOR reasoning using PR and
RUP.

This chapter also presents the results of a preliminary implementation of a
tool for checking proofs in systems based on BDD redundancy properties. The
tool dxddcheck uses the RUPBDD property to verify proofs based on sequentially
adding XOR constraints to a formula, and was evaluated on proofs derived from
Gaussian elimination reasoning performed by the SAT solver Lingeling. The
results demonstrate that dxddcheck can efficiently verify such proofs, and im-
portantly that these proofs are significantly shorter than proofs for the same
problems which do not use XOR reasoning. This demonstrates the potential of
using non-clausal, BDD redundancy properties for proofs of unsatisfiability more
generally.

Chapter 4: Redundancy by Transformation

This chapter investigates the use of transformations, functions mapping assign-
ments to assignments, as witnesses for redundant clauses. Transformations, as
introduced in Chapter 3, generalize the application of partial assignments to
assignments, allowing for more flexible witnesses than are possible with partial
assignments. However, they were used previously only in an abstract way, and
it was unclear how to conveniently represent and work with transformations.
We define directed acyclic graphs called transformation diagrams which describe
transformations, and demonstrate how such a diagram can be used to compute
the image of an assignment under the associated transformation. Further, we
describe a way to compute an expression corresponding to the composition f ◦ γ
of a Boolean function f by the transformation γ associated to a diagram, and
show that this expression can easily be written in conjunctive normal form, given
a conjunctive normal form for f .
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We show how transformation diagrams can be used as witnesses for redundant
clauses, and used in the reconstruction process employed by redundant clause
elimination procedures. Finally, we consider the use of transformation diagrams
as witnesses for covered clauses, and prove that any asymmetric covered clause
has a transformation diagram witness which is linear in the size of the covering
extension of that clause. As partial assignment witnesses for covered clauses may
be hard to compute, and the current solution reconstruction process requires
space quadratic in the size of the covering extension, this shows the advantage
of transformation diagrams over partial assignment witnesses.

5.2 Future Work

There are a number of directions for extending and building upon the work
presented in this thesis. In this final section, different lines of investigation are
proposed for further advancing the usefulness of redundancy-based reasoning in
SAT solving.

An important follow-up to the work presented on BDD redundancy properties
is the development of the dxddcheck tool into a full implementation of a proof
system based on the derivation of redundant BDDs. It is likely that an efficient
implementation will need an optimized approach to carrying out the UnitProp
procedure, which performs unit propagation over a collection of BDDs. Unit
propagation over a set of clauses usually relies on watched-literal data struc-
tures [75] in order to avoid visiting many clauses which will not further propaga-
tion. It is clear that to perform UnitProp some BDDs can be skipped, for example
by keeping track of which variables occur at which nodes, and comparing that
with the variables currently assigned. However, this still involves visiting many
BDDs which do not contribute to propagation, so it will be important to consider
a way to extend watched literals, or a similar idea, to sets of BDDs.

The use of the RUPBDD and PRBDD redundancy properties for compressing
clausal proofs should also be investigated. A sequence of clause additions, for
example in a DRAT proof, could be expressed as a single BDD that is possibly
more compact, especially if the clauses share multiple variables. If this BDD can
be derived from the set of clauses by some BDD redundancy property, then the
sequence of clause addition instructions could be replaced with an expression for
the BDD. It will be important to evaluate to what extent this strategy can reduce
the size of a proof. It is also clear that not all sequences of clauses, conjoined as
a BDD, will be derivable by a BDD redundancy property. For example, a BDD
for the conjunction of multiple clauses may include may include fewer variables
than occur in the clauses, but these variables may have been necessary in the
unit propagation checks that derived them, such as by RUP. As RUPBDD and
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PRBDD also rely on unit propagation, this could prevent the BDD from being
derivable by these properties.

Another direction is to design specific, novel formula simplification procedures
which make use of the non-model-preserving capabilities of the PRBDD redun-
dancy property. One idea is to consider other extensions of existing clausal
procedures to BDDs; for example, is there a useful notion of a blocked BDD
which is strictly more general than blocked clauses, but still lends itself to ef-
ficient identification? As formulas are typically presented as sets of clauses, a
redundant BDD could indicate multiple clauses which can be removed, or added,
at the same time. Alternatively, given strategies for efficiently working with both
clauses and BDDs during solving, a separate set of learned BDDs could be man-
aged and considered to be conjoined with the clause set.

There are a number of possible directions to explore for the use of transforma-
tion diagrams in solving as well, such as an implementation of the reconstruc-
tion procedure described in Chapter 4 which allows both partial assignments and
transformation diagrams as witnesses for removed clauses. Such an implementa-
tion could be used to confirm experimentally that the transformation diagrams
described for covered clauses are an efficient approach to reconstructing solutions
to covered clauses. It could also be interesting to consider whether the stack of
witness-labeled clauses, as used by the reconstruction function, could be com-
pressed using transformation diagrams, possibly even replacing the entire stack
with a single transformation diagram.

In general, the development of advanced notions of redundancy, such as those
explored in this thesis, presents an opportunity for the investigation of possible
new formula simplification strategies. Clause elimination procedures are typi-
cally designed to remove clauses which have an efficiently-identifiable witness;
specifically, a partial assignment witness. It could be useful to develop, and eval-
uate experimentally, similar procedures which try to identify clauses, or sets of
clauses, for which it can be efficiently determined that there is a corresponding
witness in the form of a simple transformation.
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