Goal-Sensitive Reasoning with Disconnection
Tableaux

Lee A. Barnett

The University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA
lbarnett@cs.unc.edu

Abstract. One of the challenges that has been outlined for instantiation-
based theorem proving methods is their application in reasoning over the-
ories with many axioms, as in tasks involving large ontologies or math-
ematical libraries. Goal-sensitive methods, which restrict inferences to
those related to the goal to be refuted, tend to outperform other meth-
ods on large axiom sets especially. This paper presents a goal-sensitive
adaptation of the disconnection tableau calculus, leveraging the advan-
tages of goal-sensitivity in an instantiation-based, tableau-guided proof
method. A proof of the method’s completeness follows its description, as
well as a discussion of planned future work in this area.

Keywords: theorem proving, instance-based methods, goal-sensitivity

1 Introduction

Instantiation-based automated reasoning methods combine the expressive power
of first-order logic with existing propositional theorem-proving technology to
solve difficult problems efficiently. These methods apply Herbrand’s theorem to
show the unsatisfiability of a set of first-order clauses by reducing to ground
instances of clauses. One of the application domains of such methods is reason-
ing over very large axiom sets, in which their performance is promising [5, 11].
Growing interest in this area suggests that more work should be done to improve
the strength and efficiency of these methods.

Goal-sensitive methods, which restrict inferences to those related to a par-
ticular goal to be refuted, tend to perform better especially over large theories
because of their ability to ignore potentially very large parts of the axiom set
known to be satisfiable [14]. In methods without goal-sensitivity, to prove a theo-
rem ¢ from an axiom set T, it is possible that most inferences do not involve ¢ at
all. It is desirable to have methods which are first-order and goal-sensitive [12].

The disconnection calculus was developed in [2], and its tableau format was
elaborated on and presented more rigorously in [8] as the disconnection tableau
calculus. Instead of interleaving instance generation with a separate propositional
procedure, the disconnection tableau calculus uses a tableau as a data structure
for guiding its search so that unsatisfiability detection is integrated into the
instance generation procedure. In this paper, the disconnection tableau calculus



is shown to be incapable of goal-sensitive reasoning as-is, and an adapted form
of the calculus, referred to as the goal-sensitive disconnection tableau calculus
or GSDC, is introduced which makes this kind of reasoning possible.

In section 2 an explanation of terminology and background information is
provided, along with an overview of the disconnection tableau calculus. In section
3 the goal-sensitive adaptation to the calculus is presented, and section 4 provides
a proof of this adaptation’s completeness. Section 5 concludes and provides a
description of future work.

2 Preliminaries and Background

Definitions of terms and basic notions used in this paper are explained here for
clarification. An overview of the basic disconnection tableau method follows.

2.1 Terminology

A first-order language £ with function symbols is assumed. As usual, a literal is
an atom or a negated atom. Literals L and =L are complementary. The set of
ground atoms over L is the Herbrand base of L; the set of ground terms over £
is its Herbrand universe. A Herbrand interpretation is a set of literals containing
exactly one of A or —A, for each atom A in the Herbrand base.

A clause is a disjunction of literals, often written as a set containing those
literals. In this paper, the clauses in a clause set S are assumed to be pairwise
variable-disjoint.

A substitution o is a finite set {t1/x1,t2/xa,...,tn/xs}, where the x; are
distinct variables and the ¢; are terms such that ¢; # x; forany ¢ = 1,...,n. Ap-
plying o to an expression F means to simultaneously replace each occurrence of
x; in F with the corresponding ¢; for each i = 1,...,n. The expression resulting
from applying o to F is written as Fo and is called an instance of E. Given a
clause set S, its Herbrand set S* consists of all ground instances of clauses in S
with terms from the Herbrand universe.

For substitutions o and 7, their composition o7 is a substitution which, when
applied to an expression F, has the same result as first applying ¢ to E, and
then applying 7. This is expressed by the identity E(o7) = (Eo)7. If there exists
a substitution 7’ such that 7 = o7’, then o is said to be more general than 7.
The substitution o is a unifier of expressions E; and Fs if Fio0 = Eso. If such
a substitution exists, Fy and Fs are said to be unifiable. A most general unifier
or mgu is a unifier which is more general than any other unifier.

The definitions and notions more specific to the disconnection tableau calcu-
lus itself are provided below. A description of the method follows these defini-
tions.

A literal occurrence is a pair (L, C) such that L is a literal and C is a clause
in which it appears. When convenient, (L,C) may be written as L¢. For a
substitution o, let (L, C)o (and Loo) denote the literal occurrence (Lo, Co).



A connection or link is a pair of literal occurrences ¢ = {L¢, Kp} such that
C and D are variable-disjoint and there exists a mgu o of L and =K. A clause
Co is called a linking instance of C' with respect to £.

A path through a clause set S is a function © mapping each clause C' € S to a
single literal L € C. A path may be represented by the set of literal occurrences
P={Lc | L=mn(C)}. The set of clauses of P, written C1(P), is the domain of
the function 7; the set of literals of P, written Lit(P), is the image of w. A path
is complementary if there exist literal occurrences Lo, -Lp € P. A path which
is not complementary is open or consistent. The following proposition from [9]
emphasizes the use of this notion of path.

Proposition 1. If S is a clause set and P is an open path through the Herbrand
set S*, then the set of literals of P is a model for S.

A tableau is a downward tree in which every non-root node N is labeled with a
literal occurrence. Specifically, for a clause set .S, a tableau for S is a tree in which
the children Ny,..., N,, of each node N are labeled with (L;,C), (Lo, C), ...,
(L, C), respectively, for C = L1 V Ly V -+ V L, an instance of a clause in S.
A branch of a tableau is a maximal sequence {Ni, Na,...} of nodes in T such
that N7 is a child of the root node, and N;y; is a child of N; for all ¢ > 1. A
branch B has an associated path Pg, which can be represented by the set of
literal occurrences labeling the nodes on B.

2.2 Disconnection Tableau Calculus

Here the basic calculus of the disconnection tableau method is described. Con-
struction of a tableau for a clause set S begins with respect to an input path
Pg through S called the initial path. The initial path remains fixed during con-
struction of the tableau for S. The calculus consists of the following linking rule:
given Ps and a tableau branch B such that Ps U Pg contains a pair of literal
occurrences Lo and Kp forming a link ¢ with mgu o,

1. expand B with a variable-disjoint renaming of a linking instance of one of
the clauses with respect to ¢, say Co, and

2. below the node labeled Lo, expand the branch with a variable-disjoint re-
naming of a linking instance of Do with respect to £.

That is, a clause linking step is performed and the coupled linking instances are
attached below the leaf node N of the current tableau branch B. For each branch
B, the links which can be used to expand B by the linking rule are those belong-
ing to PsU Pp; in this way the initial path acts as a prefix shared by all branches
in the tableau. Requiring that the attached linking instances be variable-disjoint
maintains that all clauses on the tableau are pairwise variable-disjoint. After
being used to expand B, a link need not be used any more on B below the node
N, “disconnecting” the connected literals. Additionally, disconnection tableaux
are generally required to be variant-free; that is, links which would expand the
tableau with a clause which could be obtained by a renaming of a clause already



on the tableau are not considered. A branch is saturated if there exist no links
to expand it in a variant-free manner.

The normal tableau closure condition of requiring two complementary literals
on the same branch is not sufficient, so a modified notion of closure is typically
used. A branch B is closed with respect to a term t, or t-closed, if its associated
path Pp becomes complementary when all variables occurring in the literals on
B are replaced with t. A branch is V-closed if it is t-closed for any term ¢. In
other words, a branch is V-closed if it contains literals L, ~K such that L = K6
for a substitution € identifying all variables. Both closure conditions can be used
for disconnection tableaux, but as in [8] the weaker notion of V-closure is used
here, since then the results in this paper will hold automatically for ¢-closure as
well. As a result a tableau is said to be closed if all its branches are V-closed;
a tableau is saturated if it is closed or if it contains a saturated branch. An
example closed disconnection tableau is shown in figure 1.

== 2P(@) v Q(a)

4 \

QW)Y R) ---_

N \

\

ﬁP(a) Q('a)

\
PS{a) /@\
—Q(a) nga)

Fig. 1. Example closed disconnection tableau. The literals contained in the initial path
are underlined.

Disconnection tableaux for a clause set S, with chosen initial path Pg, are
defined as the elements of any sequence 7g, 71, . . ., where 7y is the tableau con-
sisting of only the root node, and any 7;, for ¢ > 0, can be obtained from 7;,_; by
an application of the linking rule. The disconnection tableau calculus is sound
and complete for any choice of initial path: a clause set S is unsatisfiable if and
only if for any initial path Pg, there is a finite closed disconnection tableau for
S with Ps.

As described, the disconnection tableau calculus is non-deterministic and
requires an inference strategy for guiding tableau construction by making choices



concerning the initial path, the next branch chosen for expansion, and the next
linking step to be performed on that branch. An inference strategy which always
results in a saturated tableau is called systematic or fair. A more thorough
description of the disconnection tableau calculus and inference strategies can be
found in [9)].

3 Goal-Sensitivity

The notion of goal-sensitivity in theorem proving originated from resolution with
set of support [15], a strategy appearing as a feature of contemporary theorem
provers which use the given-clause loop [10]. Goal-sensitivity has been used in the
context of equational reasoning [3] and as part of a set of criteria for analyzing
theorem proving methods [13]. A recent formulation of goal-sensitivity was given
in [4], which is used here and summarized below.

The clause set S is assumed to comprise a collection of assumptions, known
to be consistent among themselves, and a collection of clauses generated from
the negation —p of a conjectured formula ¢. As such the clause set is taken to
be S =T UG, where TN G = (). The set G consists of clauses generated from
-, referred to as goal clauses, while the set T is the collection of assumptions.

The central notion of goal-sensitivity is relevance. Initially, only clauses in
G are considered relevant. An inference is considered relevant if at least one of
its hypotheses is relevant; clauses that result from the application of a relevant
inference are relevant as well. A theorem proving strategy is goal-sensitive if it
only performs relevant inferences. In other words, a method is goal-sensitive if
all inferences involve clauses in, or deduced from, the clauses generated from the
negated conjecture —y.

Define a literal to be relevant if it belongs to a relevant clause, a literal
occurrence to be relevant if its clause is relevant, and a link to be relevant if it
contains a relevant literal occurrence.

3.1 Disconnection Tableau Calculus is not Goal-Sensitive

Even inference strategies for the disconnection tableau calculus that prioritize
the selection of relevant links will require in some cases non-relevant links to
be expanded. As an immediate example, if the initial path does not include any
literals complementary to the specified goal literal, there will be no relevant links
for selection. However, making sure that relevant links exist on the initial path
is not enough to ensure goal-sensitivity.

Ezxample 1. Consider the input clause set given in figure 2, with the single goal
clause G = {-R(a)}. Let the initial path P be the one selecting the leftmost
literal in each clause, indicated by the underlined literals. Then there are two
links on this path: ¢, = {R(z) V-Q(z),~R(a)}, and 2 = {-P(z) VQ(z), P(a)}.

Again, the goal clause here is = R(a), indicated by the boxed clause. Only ¢y
is relevant initially, so we select it to expand the tableau. After this step, the left




branch is closed, leaving only the right branch open. The only link on Ps U Pp
is 5, which is not relevant. However, expansion of /5 closes the tableau, showing
the unsatisfiability of the clause set.

_-- —P(z)VvQ(z)
\“--- P(‘a)

\
_---Ry) vV -Q(y)

R(a) ~Q(a)

|
jR*(a)
-P(a) Q(a)

* *

Fig. 2. Example in which non-relevant links must be expanded to close the tableau.
The goal clause is indicated by the box.

Notice that in example 1 above, had the initial path included Q(z) then a
relevant link ¢35 = {=P(z) V Q(z),—Q(a)} would have been present on B, and
goal-sensitive construction of the tableau would have been possible. To reason
with disconnection tableaux in a goal-sensitive manner, particular literal occur-
rences in T'= S\ G must be available for linking. The next section describes a

method for finding these literal occurrences during tableau construction.

4 Goal-Sensitive Disconnection Tableau Calculus

The typical input to the disconnection tableau calculus is a clause set S and an
initial path Ps through S. In the previous section it is shown that Ps can be
chosen so that non-relevant linking steps must be performed to close the tableau.
As a result, the goal-sensitive disconnection tableau calculus or GSDC' requires
a new notion of path.

Definition 1 (Multipath). A multipath over a clause set S is a relation m C
S x|JS such that w(C, L) implies L € C.

Here, | S refers to the set of all literals occurring in clauses in S; that is,

Us=U{rILecy

ces



Similar to paths, a multipath 7 over S may be represented by a set of literal
occurrences P = {L¢ | w(C, L)}. The terms set of literals and set of clauses
for paths are defined similarly for multipaths. Whereas a path is defined as a
function from S to | S, a multipath is simply a relation. As a result, multipaths
differ from paths in two ways: first, there may be multiple literal occurrences
from the same clause on a multipath, and second, not every clause in S need
have a specified literal occurrence.

The GSDC takes as input a clause set S = T U G, where T is known to be
consistent and G is the set of goal clauses as before. Instead of starting with
an input, fixed initial path, a multipath is dynamically constructed over the
consistent set of assumptions during tableau construction. The GSDC consists
of two rules, the first of which is usual linking rule from the disconnection tableau
calculus, where the initial path Ps over S has been replaced with a multipath
P over T. The second is the following rule to add new literal occurrences to the
multipath P over T to expand a branch B:

Definition 2 (Multipath-add rule). If no relevant links exist on P U Pg,
then for each Lo € Pg, do the following:

— for each D € T, if there exists K € D such that {Lc,Kp} is a link which
has not been used on B, add Kp to P.

The multipath P over T takes the place of the initial path in the usual discon-
nection calculus in that it acts as a common prefix of all branches. Each open
branch B is expanded by application of the linking rule to a relevant link. If
none exist for an open branch B, the multipath-add rule is applied to find links
which have not yet been used on B, if they exist.

At the beginning of tableau construction, P consists of only the literal oc-
currences in 1" which form a link with some clause in G; this is referred to as the
initial multipath. As a result, the literal occurrences added to P by the multipath-
add rule for a branch B are those which form new relevant links, making these
available for expanding B by applying the linking rule.

Tableaux for the GSDC are defined in a similar manner to disconnection
tableaux, except that the fixed initial path Pg over S has been replaced with a
dynamically constructed multipath.

Definition 3 (Goal-sensitive disconnection tableau sequence). A goal-
sensitive disconnection tableau sequence is defined as any sequence

(70, Po), (T, P1), (T2, Pa), ...

such that To is the tableau which consists of only the root node, Py is the initial
multipath, and for i > 0, either

— T; is obtained from (Ti—1,Pi—1) by an application of the linking rule and
P, =PF;,_4, or

— T; = T;_1 and P; is obtained from P;_1 by an application of the multipath-add
rule.



Any tableau Ty in the sequence above is called a goal-sensitive disconnection
tableau for S.

The branch and tableau closure condition used here for the GSDC is V-
closure, as for the usual disconnection tableau calculus. However, an altered
definition of saturation is used. The GSDC expand a branches in a tableau until
it closes, or until there are no links to expand it further, even after applying the
multipath-add rule.

Definition 4 (Relevance-saturation). A branch B is relevance-saturated if
it cannot be expanded in a variant-free manner by an application of the multipath-
add rule followed by an application of the linking rule. A tableau is relevance-
saturated if it is closed, or if one of its branches is relevance-saturated.

Like the usual disconnection tableau calculus, an inference strategy is needed
for branch and link selection.

Definition 5 (Revelance-fairness). An inference strategy is relevance-fair if
1t always results in a relevance-saturated tableau.

This method is sound and complete when guided by a relevance-fair inference
strategy. Its soundness follows from the soundness of the usual disconnection
tableau calculus, as any closed tableau constructed by the GSDC is simply a
closed disconnection tableau. Its completeness is shown in the following section.
The remainder of this section provides examples of tableaux constructed with
the GSDC.

Ezample 2. Consider the clause set from example 1, with initial satisfiable set
T ={-P(z)VQ(z),R(y)V-Q(y), P(a)} and goal clause G = —R(a). There are
two links ¢; and ¢ as defined in example 1. The multipath P initially contains
just the literal occurrence (R(y), R(y) V —Q(y)).

The linking rule expands the tableau with ¢;, the only relevant link. As
before, the left branch closes, leaving the right branch B open. Since there are
no relevant links on P U Pg, and B is open, the multipath-add rule is applied,
setting P = {R(y) V-Q(y), ~P(x)VQ(x)}. The updated branch B now contains
the unused, relevant link ¢ = {=P(z) V Q(x), ~Q(a)}. Expanding ¢ closes the
tableau.

The following example illustrates the importance of the multipath definition
allowing multiple literals from a single clause to be present on P.

Example 3. Let the S = T U G be given as in figure 2. Since two links are
possible between the top clause and the goal, but only one will lead to a tableau
closure, it is important to include multiple literal occurrences for this clause in
the multipath.

The following example shows the advantage of goal-sensitivity; that links
between clauses not related to the goal need not be considered.



—P(z,y) VQy,x) V Q(z,y) -~ .

RN
P(a,b) > '
|
“Q(b’a) ,'/ L
ST
~Qa,b) |---7"
-P(b,a) /.\Q% Qb,a)
\ *
—P(a,b) Q(b,a) Q(a,b)
* * ‘
-Q(a,b)

Fig. 3. Example tableau in which multiple literals from a single clause must be added
to the multipath.

Ezxample 4. Let S =T UG be given as in figure 3. After expanding the only rel-
evant link, the multipath-add rule searches for other literals to link with ~Q(a).
However, since none are present in 7', the branch becomes relevance-saturated,
and tableau construction ends, showing satisfiability of the clause set S.

—Q(a) R(a)

Saturation |
State —R(a)

Fig. 4. Example in which tableau construction terminates early on a satisfiable clause
set S because no relevant links can be made.



4.1 Completeness

The aim of this section is to show the completeness of the GSDC; that is, that
whenever S = T'UG is unsatisfiable, for a consistent clause set T', the GSDC con-
structs a closed tableau. The main idea is that when a branch in a goal-sensitive
disconnection tableau for S is relevance-saturated, an instance-preserving enu-
meration [8] of that branch can be combined with a model for T to construct a
model for S.

Given a set P of literal occurrences, an instance-preserving enumeration of
P is a sequence {1,{5,/3,... in which exactly the elements of P appear in a
particular order. Specifically, for ¢; = Lo and ¢; = Kp, whenever C is a proper
instance of D it holds that ¢ > j. To any instance-preserving enumeration F of
P is associated its Herbrand path P* through S*, the Herbrand set of C1(P), as
follows: Lo € P* if and only if there exists ¢,, = Kp in E such that C is an
instance of D, and there does not exist ¢, = K}, in E, with n > m, such that
C' is an instance of D’'.

The main conclusion of this section will follow from the lemma below.

Lemma 1. Let B be a relevance-saturated branch in a tableau for S =T UG,
where T is a satisfiable clause set. Let P’ be a consistent Herbrand path for T,
and Pg the path associated with B. Then the set of literals I of

P=PiU{Lce P |Ce(CIS)\ Cli(Pg))}
s a partial Herbrand model for S.

Proof. We show that P is a consistent Herbrand path through S*. Suppose not;
that is, that there exist complementary literal occurrences Lo and —=Lp in P.
Because B is open, the path Pg is consistent, so it must be that not both Lo
and =Lp belong to Pj;. Because P’ is consistent and (P \ Pj;) C P’, it must be
that not both Le and —Lp belong to P\ P} either. Without loss of generality,
then, assume Lo € P, and -Lp € P\ Pj. Then in the tableau L¢ is a node
on branch B, so L¢ is relevant. Since B is open, the multipath-add rule would
have added =L p to the multipath over T, and then ¢ = {L¢c,—Lp} would have
been a relevant link on B. This contradicts the assumption that ~Lp € P\ Pj;
that is, that D ¢ Cl(Pp).

Since P is a consistent Herbrand path through S*, then by proposition 1, P
is a partial Herbrand model for S.

The main result of this section follows as a result of this lemma.

Proposition 2. If S = T UG is an unsatisfiable clause set, T is a satisfiable
clause set, and f is a relevance-fair strategy, then the tableau for S and f is a
V-closed disconnection tableau for S.

Proof. Let T be the tableau for S and f and suppose that 7 had an open branch
B. Since f is a fair strategy, then B would be relevance-saturated. Therefore by
Lemma 1, S would be satisfiable.



5 Discussion and Conclusion

In this paper the GSDC was presented, an adaptation of the disconnection
tableau calculus that allows for goal-sensitive reasoning. A proof of completeness
was given along with examples of the method in use. The GSDC is an automated
reasoning method that is both instantiation-based and goal-sensitive, a combina-
tion which could have practical use in areas such as formal software verification
that handle very large axiom sets.

The usual disconnection tableau calculus benefits from well-chosen initial
paths in that they can lead to significantly shorter proofs, but the GSDC as
presented simply initializes the multipath using the set of literal occurrences
which form links with the goal. However, the multipath-add rule ensures that
relevant links are found, and the method is complete, regardless of the way
the initial multipath is specified. In other words, a well-chosen multipath for
initializing tableau construction can lead to shorter proofs in the GSDC as well,
while remaining goal-sensitive.

The mechanics and notions employed by the GSDC as described are simi-
lar to those of previous methods, including hyper tableaux [1], and as such the
first planned follow-up to this work is a detailed qualitative comparison. In ad-
dition, an experimental evaluation of the GSDC is needed. An implementation
of the disconnection tableau calculus was developed as the disconnection cal-
culus theorem prover or DCTP [7], and so an initial planned follow-up to this
work is to implement the GSDC as an extension of the DCTP and evaluate its
performance. As a future research direction, we are interested in adapting other
instantiation-based methods to be goal-sensitive as well, including the Inst-Gen
method [6].

References

1. Baumgartner, P.: Hyper tableaux - the next generation. In: de Swart, H. (ed.)
Proceedings of the Seventh International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX). Lecture Notes in
Artificial Intelligence, vol. 1397, pp. 60-76. Springer (1998)

2. Billon, J.P.: The disconnection method. In: Miglioli, P., Moscato, U., Mundici,
D., Ornaghi, M. (eds.) Proceedings of the International Workshop on Theorem
Proving with Analytic Tableaux and Related Methods (TABLEAUX). Lecture
Notes in Computer Science, vol. 1071, pp. 110-126. Springer (1996)

3. Bonacina, M.P., Hsiang, J.: On fairness of completion-based theorem proving
strategies. In: Book, R.V. (ed.) Proceedings of the Fourth Conference on Rewriting
Techniques and Applications (RTA). Lecture Notes in Computer Science, vol. 488,
pp. 348-360. Springer (1991)

4. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: in-
ference system and completeness. Journal of Automated Reasoning, vol. in press,
1-54 (2017), published online 6 August 2016 with DOI: 10.1007/s10817-016-9384-2

5. Korovin, K.: Instantiation-based automated reasoning: from theory to practice. In:
Schmidt, R.A. (ed.) Proceedings of the 22nd International Conference on Auto-
mated Deduction (CADE). pp. 163-166. Springer (2009)



10.

11.

12.

13.

14.

15.

Korovin, K.: Inst-Gen — a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics: Essays
in Memory of Harald Ganzinger. pp. 239-270. Springer (2013)

Letz, R., Stenz, G.: DCTP - A disconnection calculus theorem prover - system
abstract. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceedings of the First
International Joint Conference on Automated Reasoning (IJCAR). pp. 381-385.
Springer (2001)

Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In:
Nieuwenhuis, R., Voronkov, A. (eds.) Proceedings of the Eighth Logic for Program-
ming, Artificial Intelligence, and Reasoning International Conference (LPAR). pp.
142-156. Springer (2001)

Letz, R., Stenz, G.: The disconnection tableau calculus. Journal of Automated
Reasoning 38(1), 79-126 (2007)

McCune, W.: Otter 3.3 reference manual. Technical Report ANL/MCS-TM-263,
MCS Division, Argonne National Laboratory, Argonne, IL (2003)

Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: The annual SUMO reasoning prizes at
CASC. In: Proceedings of the IJCAR Workshop on Practical Aspects of Automated
Reasoning. vol. 373 of CEUR Workshop Proceedings, pp. 66—70 (2008)

Plaisted, D.A.: History and prospects for first-order automated deduction. In: Felty,
A.P., Middeldorp, A. (eds.) Proceedings of the 25th International Conference on
Automated Deduction (CADE). pp. 3-28. Springer (2015)

Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Vieweg
(1997)

Reif, W., Schellhorn, G.: Theorem proving in large theories. In: Bibel, W., Schmitt,
P.H. (eds.) Automated Deduction— A Basis for Applications: Volume III Applica-
tions. pp. 225-241. Springer, Dordrecht (1998)

Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of
support strategy in theorem proving. Journal of the ACM 12(4), 536-541 (1965)



