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Overview

e SAT success by reasoning about redundancy

e Non-equivalence-preserving solving techniques
e Strong propositional proof systems

e Revisit covered clauses [5]

e Generalization of blocked clauses [14]
e Used for clause elimination, preprocessing

e Consider CCs in more recent context of redundancy

e Redundancy characterized via witnesses
e Proof systems like SPR and PR [7]
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Overview

e SAT success by reasoning about redundancy

e Non-equivalence-preserving solving techniques
e Strong propositional proof systems

e Revisit covered clauses [5]

e Generalization of blocked clauses [14]
e Used for clause elimination, preprocessing

e Consider CCs in more recent context of redundancy

e Redundancy characterized via witnesses
e Proof systems like SPR and PR [7]

» Present an algorithm to identify CCs
» Show CCs are not generalized by PR
» Prove witnesses for CCs are hard to compute

» Deciding clause redundancy is co-DP-complete
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Background

Redundancy [13]

Clause C is redundant w.r.t. formula F if:
F and F A C are equisatisfiable J

» Suppose (—x1 V x2) is redundant w.r.t. F
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Background

Redundancy [13]

Clause C is redundant w.r.t. formula F if:
F and F A C are equisatisfiable J

» Suppose (—x1 V x2) is redundant w.r.t. F

» |f o includes solutions, there are solutions elsewhere too
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Background
» Efficiently decidable redundancy properties P(F, C)

P(F,C) = C is redundant w.r.t. F
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» Strong preprocessing, inprocessing techniques

(2) Proof systems: add C ¢ F such that P(F, C), eventually add L
» (Resolution), DRAT [16], SPR, PR (Propagation Redundancy)
» PR has simple, short proofs of pigeonhole formulas [7]

(shortest res. proofs are exponential in size [3])
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Background
» Efficiently decidable redundancy properties P(F, C)

P(F,C) = C is redundant w.r.t. F

(1) Clause Elimination: iteratively remove C € F s.t. P(F,C)
» Subsumption, blocked clauses, covered clauses (see [6])

» Strong preprocessing, inprocessing techniques

(2) Proof systems: add C ¢ F such that P(F, C), eventually add L
» (Resolution), DRAT [16], SPR, PR (Propagation Redundancy)
» PR has simple, short proofs of pigeonhole formulas [7]

(shortest res. proofs are exponential in size [3])

* Strong even without extension (new variables), deletion

* Seem to be somewhat “automatizable”
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Background

Witnesses [7, 9]

HKB [7]: C is redundant w.r.t. F <= for o = =C, there exists w:

1) wEC
(2) Fla E Flo

» w is a witness for C
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Background

Witnesses [7, 9]

HKB [7]: C is redundant w.rt. F <= for a = =C, there exists w:

1) wEC
(2) Fla E Flo

» w is a witness for C

> C = (—|X1 vV X2)
P> W= —xq, X2, X3 is @ witness if Fly o F Flax,—x.x
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Background

Witnesses [7, 9]

Clause elimination: witnesses needed for reconstruction [4]
» Remove redundant clauses Ci, Gy, ..., Cy from F
» Solution 7 for F\ {Cy,..., Cy} may not satisfy F

» Record witness w; for each C;, apply reconstruction function

RE(T) =T 7-‘)'cr(o.):C)(T) - {

Ro(T) if TEC
Rs(Tow) otherwise
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Background

Witnesses [7, 9]

Clause elimination: witnesses needed for reconstruction [4]
» Remove redundant clauses Cy, G, ..., Cy from F
» Solution 7 for F\ {Cy,..., Cy} may not satisfy F

» Record witness w; for each C;, apply reconstruction function

Ro(T if TE C
7ee(T) =T R0'~(oJ:C)(T) - ( ) .
Ro(T ow) otherwise
Witnesses crucial for PR proofs as well
Cis PRw.rt. Fif F|o 1 F|, for some wE C J

» Deciding if C is PR w.r.t. F is NP-complete [10]

» Must record witness for each added C for polynomial proof check

6/20



Background

Witnesses [7, 9]

Property Witness w Implication check

Subsumption any* Fla oL

RUP [2] any* Floti L
Blocking a ol for some l € C Fla 2 Flu

RAT a o/l for some £ € C Flo F1 Flo
Set-blocking [13] ao L for some L C C Fla 2 Flo,

SPR aol forsome L C C Flo F1 Flo
Global-blocking [12] || awo L for some LN C # O | Flo 2 Fl,,

PR any Fla F1 Flo

R any Fla F Flo

» F|, 1 L means unit propagation on F|, produces L
» F|,F1 Fl, means Flo A=D1 L for every D € F|,
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Covered Clauses
Definition [5, 6]

» Consider the resolvents of C = (aV b) on a:
C®,(DV —a) forall (DV —a)eF

All resolvents tautological = a blocks C
All non-taut. resolvents include x => a covers x

» Extend C by adding covered literals: Cext = (aV bV x)

(F/\Cext)‘ﬁa,ﬁb |_1 (F/\ Cext)‘a,ﬁb

» C is redundant w.r.t. F A Cex, with witness w = a, —b

P lteratively add covered literals to Cext

C is covered if some extension Cey is blocked, or subsumed. J
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Covered Clauses
Example
(1) a covers x
(2) b covers y
(3) Cext blocked by x

(4) (aV b) is covered

(aV b)

e
(aVvbVx)
e
(avbVvxVy)

e
ke
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Covered Clauses

Example

(1) a covers x (aV b)
e

(2) b covers y (aVvbVx)
e

(3) Cext blocked by x (avbVvxVy)
e

(4) (aV b) is covered T

» Reconstruction for CC-Elimination: use the sequence of witnesses
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Covered Clauses
Example

(1) a covers x

(2) b covers y

(3) Cext blocked by x

(4) (aV b) is covered

(aV b)

I
(aVbVx)
2
(avbVvxVy)

I
he

W1 = a,—\b

wy = —a, b, ~x

w3 = —\a,—|b,x, Y

» Reconstruction for CC-Elimination: use the sequence of witnesses
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Covered Clauses

Example

(1) a covers x (aV b) w1 = a,—b
4

(2) b covers y (aV bVx) wy = —a, b, ~x
4

(3) Cext blocked by x (avbVxVy) w3 = —a, ~b, x, 7y
4

(4) (aV b) is covered T

» Reconstruction for CC-Elimination: use the sequence of witnesses
(ws: aVvbVvxVy)
(w2: aVvVbVx)
(wi: aVvb)
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Identifying Covered Clauses

» Actually identify asymmetric covered clauses [6]

» Can extend C by both covered and asymmetric literals ¢:

(DV —=t) € F for some D C C
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Identifying Covered Clauses

» Actually identify asymmetric covered clauses [6]

» Can extend C by both covered and asymmetric literals ¢:

(DV —=t) € F for some D C C

» Adding asymmetric literals is equivalence-preserving

» ACC is strictly more general than CC
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Identifying Covered Clauses

ACC(F,C)
1 o=c
2 E:= C
3 a = ~C
4 repeat
5 if | € F|, then return (true, o)
6 if there are unit clauses in F|, then
7 a := aU{u} for each unit u
8 else
9 for each | € E
10 G :={D|a | (DV~-l)€ Fand D|a # T}
11 if G =0 then return (true, o-(=E;: E))
12 P = r](}
13 if &#0 then
14 oc:=o0-(0E:E)
15 E=FEUJU ¢
16 a:=alU-d
17 until no updates to a
18 return (false, ¢)
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Identifying Covered Clauses

ACC(F,C)
o= ¢ witness sequence
E:= C C with covered literals
a = -C C with all added literals (negated)
repeat Subsumption
if L € F|, then return (true, 0) «—  Check

if there are unit clauses in F|, then

Add all asymmetric literals

a := aU{u} for each unit u
else
for each | € E
G = {D]a | (DV ) € F and D|o # T}
if G =0 then return (true, o-(—E;: E))
Blocking /

12 Checkon ! 2 = ﬂG

© o N O R W N -

-
=]

13 if ®#( then Recolgltg
/ witness seq.

14 oc:=o0-(0E:E)

15 E=FU & Add all literals

16 a=aU-® covered by /

17 until no updates to a

18 return (false, )
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Witnesses for Covered Clauses

» Witness sequence can be quadratic in the size of Ceyt

|wn| 4 -+ - + |wi]
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Witnesses for Covered Clauses

» Witness sequence can be quadratic in the size of Cext

| Cext| + -+ +|C]|

» C is covered in F = C is redundant w.r.t. F

» HKB: C has a single witness w. Can we compute it?

Thm. Computing w can be as hard as finding satisfying assignments. J

12/20



Witnesses for Covered Clauses

Thm. Computing w can be as hard as finding satisfying assignments.
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» Proof sketch: Take any CNF formula G. Let C = (aV b)
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Witnesses for Covered Clauses

Thm. Computing w can be as hard as finding satisfying assignments. )

» Proof sketch: Take any CNF formula G. Let C = (aV b)
» Define F =(-aVx)A(=bVy)A(-xV-y)AS(G,x,y), and

S(G,xy)= N (xvD) A (yvD)
DeG D'eG’

where G’ = /\ D' is a variable-renamed copy of G.
DeG
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Witnesses for Covered Clauses

Thm. Computing w can be as hard as finding satisfying assignments. )

» Proof sketch: Take any CNF formula G. Let C = (aV b)
» Define F =(-aVx)A(=bVy)A(-xV-y)AS(G,x,y), and

S(G,x,y) = /\(x\/D) /\ (yvD)
DeG D'eG’

where G’ = /\ D' is a variable-renamed copy of G.
DeG

» Ciscovered: (aVb)—(aVbVx)—=(aVbVxVy)—T
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Witnesses for Covered Clauses

C=(aVvb)
F=(=aVx)A(=bVy)A(=xV-y)AS(G,x,y)

S(G,x,y) = /\(X\/D) /\ (yvD)
DeG D'eG’
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Witnesses for Covered Clauses

C=(aVvb)
F=(=aVx)A(=bVy)A(=xV-y)AS(G,x,y)
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DeG D'eG’

» G is satisfiable <> any w for C includes a solution for G or G’
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Witnesses for Covered Clauses

C=(aVvb)
F=(=aVx)A(=bVy)A(-xV-y)AS(G,x,y)

S(G,x,y) = /\(x\/D) /\ (yvD)
DeG D'eG’

» G is satisfiable <= any w for C includes a solution for G or G’
Fla = (=xV-y) AS(G, x,y)

» If a € wthen (maVx)|, =(x) € Flu, = x € w as well
» If x € w then =y € w, and w satisfies G’

14/20



Witnesses for Covered Clauses

C=(aVvb)
F=(=aVx)A(=bVy)A(-xV-y)AS(G,x,y)

S(G,x,y) = /\(x\/D) /\ (yvD)
DeG D'eG’

» G is satisfiable <= any w for C includes a solution for G or G’

Flo = (=xV-y) AS(G,x,y)

» If a € wthen (maV x)|w = (x) € Fl, = x € w as well
» If x € w then =y € w, and w satisfies G’
» If b € w then w satisfies G
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Covered Clauses are not PR

Cor. Not all covered clauses are PR )

Same set up as before:
C=(aVvb)

F=(=aVx)A(=bVy)A(~xV-y) AS(G, x,y)

S(G,x,y) = /\(X\/D) /\ (yvD)

DeG D'eG’
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Covered Clauses are not PR

Cor. Not all covered clauses are PR )

Same set up as before:
C=(aVvb)

F=(=aVx)A(=bVy)A(~xV-y) AS(G, x,y)

S(G,x,y) = /\(X\/D) /\ (yvD)

DeG D'eG’

» Take G = (cVd)A(—cVd)A(cV—d)A(—cV—d)
» No w for C satisfies F|, F1 Flo
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Deciding PR vs. R

» Deciding whether a clause is PR is NP-complete [10]

» Main goal: find useful PR clauses while solving
» SDCL [8] use reducts to detect PR clauses

» Small propositional formulas (ideally easy to solve)
» (Un-)satisfiable reduct = C is (not) PR w.r.t. F
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Deciding PR vs. R

» Deciding whether a clause is PR is NP-complete [10]

» Main goal: find useful PR clauses while solving
» SDCL [8] use reducts to detect PR clauses

» Small propositional formulas (ideally easy to solve)
» (Un-)satisfiable reduct = C is (not) PR w.r.t. F

» Can we detect R clauses the same way?
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Complexity of R

Difference Polynomial Time

Difference Polynomial Time or DP [15] is the class:

DP = {Ll\Lz | Li,L € NP}

» Defined to classify various “exact” or “critical problems”

» Ex: can a graph G be colored using exactly four colors?

NP, co-NP C DP C ©F = pNPIO(og)]

» Second-level of the Boolean hierarchy over NP [1]
» BH collapse = PH collapse [11]
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Complexity of R

Thm. Deciding R is co-DP-complete J

» Proof sketch: show complement is complete for DP

(F,C) € Rif Cis not redundant w.r.t. F
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Complexity of R

Thm. Deciding R is co-DP-complete J

» Proof sketch: show complement is complete for DP

(F,C) € Rif Cis not redundant w.r.t. F

> R={(F,C)| Fis SAT but F A C is UNSAT}
={(F,C) | FESAT}\ {(F,C) | FAC € SAT}
€ DP
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Complexity of R

Thm. Deciding R is co-DP-complete

» Reduction from SAT-UNSAT: (F, G) s.t. F is SAT, G is UNSAT
» Given F and G, let C' = x and construct:

F' = /\(C\/x) /\(D\/—|x)

CcF DeG
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Complexity of R

Thm. Deciding R is co-DP-complete

» Reduction from SAT-UNSAT: (F, G) s.t. F is SAT, G is UNSAT
» Given F and G, let C' = x and construct:

F' = /\(C\/x) /\(D\/—|x)

CcF DeG

» (' is not redundant w.r.t. F' <= (F,G) € SAT-UNSAT
» Notice:

Flla="A(D) =6
DeG

Fllx= A(C) =F
CeF
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Conclusion

» Presented algorithm to identify ACCs
» Proved witnesses for CCs are hard to compute
» Showed PR does not generalize CC

» Deciding clause redundancy is co-DP-complete

20/20



Conclusion

» Presented algorithm to identify ACCs
» Proved witnesses for CCs are hard to compute
» Showed PR does not generalize CC

» Deciding clause redundancy is co-DP-complete

* Future work: different witness structures, non-clausal redundancy

20/20



Conclusion

» Presented algorithm to identify ACCs
» Proved witnesses for CCs are hard to compute
» Showed PR does not generalize CC

» Deciding clause redundancy is co-DP-complete

* Future work: different witness structures, non-clausal redundancy

Thanks!
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