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Overview

• SAT success by reasoning about redundancy
• Non-equivalence-preserving solving techniques
• Strong propositional proof systems

• Revisit covered clauses [5]
• Generalization of blocked clauses [14]
• Used for clause elimination, preprocessing

• Consider CCs in more recent context of redundancy
• Redundancy characterized via witnesses
• Proof systems like SPR and PR [7]

I Present an algorithm to identify CCs
I Show CCs are not generalized by PR
I Prove witnesses for CCs are hard to compute
I Deciding clause redundancy is co-DP-complete
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Background
Redundancy [13]

Clause C is redundant w.r.t. formula F if:
F and F ∧ C are equisatisfiable

I Suppose (¬x1 ∨ x2) is redundant w.r.t. F

I If α includes solutions, there are solutions elsewhere too
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Background
I Efficiently decidable redundancy properties P(F ,C)

P(F ,C)⇒ C is redundant w.r.t. F

(1) Clause Elimination: iteratively remove C ∈ F s.t. P(F ,C)
I Subsumption, blocked clauses, covered clauses (see [6])
I Strong preprocessing, inprocessing techniques

(2) Proof systems: add C 6∈ F such that P(F ,C), eventually add ⊥
I (Resolution), DRAT [16], SPR, PR (Propagation Redundancy)
I PR has simple, short proofs of pigeonhole formulas [7]

(shortest res. proofs are exponential in size [3])

∗ Strong even without extension (new variables), deletion
∗ Seem to be somewhat “automatizable”
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Background
Witnesses [7, 9]

HKB [7]: C is redundant w.r.t. F ⇐⇒ for α = ¬C , there exists ω:

(1) ω ��� C
(2) F |α ��� F |ω

I ω is a witness for C

I C = (¬x1 ∨ x2)
I ω = ¬x1,¬x2, x3 is a witness if F |x1,¬x2 � F |¬x1,¬x2,x3
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Background
Witnesses [7, 9]

Clause elimination: witnesses needed for reconstruction [4]
I Remove redundant clauses C1, C2, . . . , CN from F
I Solution τ for F \ {C1, . . . ,CN} may not satisfy F
I Record witness ωi for each Ci , apply reconstruction function

Rε(τ) = τ Rσ·(ω:C)(τ) =
{
Rσ(τ) if τ � C
Rσ(τ ◦ ω) otherwise

I Deciding if C is PR w.r.t. F is NP-complete [10]
I Must record witness for each added C for polynomial proof check
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Background
Witnesses [7, 9]

Property Witness ω Implication check
Subsumption any* F |α 3 ⊥
RUP [2] any* F |α `1 ⊥
Blocking α ◦ ` for some ` ∈ C F |α ⊇ F |ω
RAT α ◦ ` for some ` ∈ C F |α `1 F |ω
Set-blocking [13] α ◦ L for some L ⊆ C F |α ⊇ F |ω
SPR α ◦ L for some L ⊆ C F |α `1 F |ω
Global-blocking [12] α ◦ L for some L ∩ C 6= ∅ F |α ⊇ F |ω
PR any F |α `1 F |ω
R any F |α � F |ω

I F |α `1 ⊥ means unit propagation on F |α produces ⊥
I F |α `1 F |ω means F |α ∧ ¬D `1 ⊥ for every D ∈ F |ω
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Covered Clauses
Definition [5, 6]

I Consider the resolvents of C = (a ∨ b) on a:

C ⊗a (D ∨¬a) for all (D ∨ ¬a) ∈ F

All resolvents tautological ⇒ a blocks C
All non-taut. resolvents include x ⇒ a covers x

I Extend C by adding covered literals: Cext = (a ∨ b ∨ x)

(F ∧ Cext)|¬a,¬b `1 (F ∧ Cext)|a,¬b

I C is redundant w.r.t. F ∧ Cext, with witness ω = a,¬b
I Iteratively add covered literals to Cext

C is covered if some extension Cext is blocked, or subsumed.
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Covered Clauses
Example

(1) a covers x (a ∨ b)
⇓

(2) b covers y (a ∨ b ∨ x)
⇓

(3) Cext blocked by x (a ∨ b ∨ x ∨ y)
⇓

(4) (a ∨ b) is covered >

I Reconstruction for CC-Elimination: use the sequence of witnesses
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Covered Clauses
Example

(1) a covers x (a ∨ b) ω1 = a,¬b
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Identifying Covered Clauses

I Actually identify asymmetric covered clauses [6]
I Can extend C by both covered and asymmetric literals `:

(D ∨ ¬`) ∈ F for some D ⊆ C

I Adding asymmetric literals is equivalence-preserving
I ACC is strictly more general than CC
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Identifying Covered Clauses
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Witnesses for Covered Clauses

I Witness sequence can be quadratic in the size of Cext

|ωn|+ · · ·+ |ω1|

I C is covered in F ⇒ C is redundant w.r.t. F
I HKB: C has a single witness ω. Can we compute it?

Thm. Computing ω can be as hard as finding satisfying assignments.
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Witnesses for Covered Clauses

Thm. Computing ω can be as hard as finding satisfying assignments.

I Proof sketch: Take any CNF formula G . Let C = (a ∨ b)

I Define F = (¬a ∨ x) ∧ (¬b ∨ y) ∧ (¬x ∨ ¬y) ∧ S(G , x , y), and

S(G , x , y) =
∧

D∈G
(x ∨ D)

∧
D′∈G ′

(y ∨ D′)

where G ′ =
∧

D∈G
D′ is a variable-renamed copy of G .

I C is covered: (a ∨ b)→ (a ∨ b ∨ x)→ (a ∨ b ∨ x ∨ y)→ >
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Witnesses for Covered Clauses

C = (a ∨ b)

F = (¬a ∨ x) ∧ (¬b ∨ y) ∧ (¬x ∨ ¬y) ∧ S(G , x , y)

S(G , x , y) =
∧

D∈G
(x ∨ D)

∧
D′∈G ′

(y ∨ D′)

I G is satisfiable ⇐⇒ any ω for C includes a solution for G or G ′

F |α = (¬x ∨ ¬y) ∧ S(G , x , y)

I If a ∈ ω then (¬a ∨ x)|ω = (x) ∈ F |ω ⇒ x ∈ ω as well
I If x ∈ ω then ¬y ∈ ω, and ω satisfies G ′

I If b ∈ ω then ω satisfies G
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Covered Clauses are not PR

Cor. Not all covered clauses are PR

Same set up as before:
C = (a ∨ b)

F = (¬a ∨ x) ∧ (¬b ∨ y) ∧ (¬x ∨ ¬y) ∧ S(G , x , y)

S(G , x , y) =
∧

D∈G
(x ∨ D)

∧
D′∈G ′

(y ∨ D′)

I Take G = (c ∨ d) ∧ (¬c ∨ d) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)
I No ω for C satisfies F |α `1 F |ω
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Deciding PR vs. R

I Deciding whether a clause is PR is NP-complete [10]

I Main goal: find useful PR clauses while solving
I SDCL [8] use reducts to detect PR clauses

I Small propositional formulas (ideally easy to solve)
I (Un-)satisfiable reduct⇒ C is (not) PR w.r.t. F

I Can we detect R clauses the same way?
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Complexity of R
Difference Polynomial Time

Difference Polynomial Time or DP [15] is the class:

DP = {L1 \ L2 | L1, L2 ∈ NP}

I Defined to classify various “exact” or “critical problems”
I Ex: can a graph G be colored using exactly four colors?

NP, co-NP ⊆ DP ⊆ ΘP
2 = PNP[O(log)]

I Second-level of the Boolean hierarchy over NP [1]
I BH collapse⇒ PH collapse [11]
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Complexity of R

Thm. Deciding R is co-DP-complete

I Proof sketch: show complement is complete for DP

(F ,C) ∈ R if C is not redundant w.r.t. F

I R = {(F ,C) | F is SAT but F ∧ C is UNSAT}
= {(F ,C) | F ∈ SAT} \ {(F ,C) | F ∧ C ∈ SAT}
∈ DP

18 / 20
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Complexity of R

Thm. Deciding R is co-DP-complete

I Reduction from SAT-UNSAT: (F ,G) s.t. F is SAT, G is UNSAT
I Given F and G , let C ′ = x and construct:

F ′ =
∧

C∈F
(C ∨ x)

∧
D∈G

(D ∨ ¬x)

I C ′ is not redundant w.r.t. F ′ ⇐⇒ (F ,G) ∈ SAT-UNSAT
I Notice:

F ′|x =
∧

D∈G
(D) = G

F ′|¬x =
∧

C∈F
(C) = F
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Conclusion

I Presented algorithm to identify ACCs
I Proved witnesses for CCs are hard to compute
I Showed PR does not generalize CC
I Deciding clause redundancy is co-DP-complete

∗ Future work: different witness structures, non-clausal redundancy
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Conclusion

I Presented algorithm to identify ACCs
I Proved witnesses for CCs are hard to compute
I Showed PR does not generalize CC
I Deciding clause redundancy is co-DP-complete

∗ Future work: different witness structures, non-clausal redundancy

Thanks!
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