Covered Clauses Are Not Propagation Redundant

Lee A. Barnett David Cerna Armin Biere

Institute for Formal Models and Verification Johannes Kepler University

July 2, 2020

Overview

- SAT success by reasoning about **redundancy**
	- Non-equivalence-preserving solving techniques
	- Strong propositional proof systems
- Revisit **covered clauses** [\[5\]](#page-50-0)
	- Generalization of blocked clauses [\[14\]](#page-52-0)
	- Used for clause elimination, preprocessing
- Consider CCs in more recent context of redundancy
	- Redundancy characterized via **witnesses**
	- Proof systems like SPR and PR [\[7\]](#page-51-0)

Overview

- SAT success by reasoning about **redundancy**
	- Non-equivalence-preserving solving techniques
	- Strong propositional proof systems
- Revisit **covered clauses** [\[5\]](#page-50-0)
	- Generalization of blocked clauses [\[14\]](#page-52-0)
	- Used for clause elimination, preprocessing
- Consider CCs in more recent context of redundancy
	- Redundancy characterized via **witnesses**
	- Proof systems like SPR and PR [\[7\]](#page-51-0)
- \triangleright Present an algorithm to identify CCs
- \triangleright Show CCs are not generalized by PR
- \blacktriangleright Prove witnesses for CCs are hard to compute
- \triangleright Deciding clause redundancy is co-DP-complete

Redundancy [\[13\]](#page-52-1)

Clause C is **redundant** w.r.t. formula F if:

F and F ∧ C are **equisatisfiable**

▶ Suppose $(\neg x_1 \lor x_2)$ is redundant w.r.t. F

Redundancy [\[13\]](#page-52-1)

Clause C is **redundant** w.r.t. formula F if:

F and F ∧ C are **equisatisfiable**

▶ Suppose $(\neg x_1 \lor x_2)$ is redundant w.r.t. F

If α includes solutions, there are solutions elsewhere too

 \blacktriangleright Efficiently decidable **redundancy properties** $P(F, C)$

 \blacktriangleright Efficiently decidable **redundancy properties** $P(F, C)$

- **(1) Clause Elimination**: iteratively remove $C \in F$ s.t. $P(F, C)$
	- \triangleright Subsumption, blocked clauses, covered clauses (see [\[6\]](#page-50-1))
	- \blacktriangleright Strong preprocessing, inprocessing techniques

 \blacktriangleright Efficiently decidable **redundancy properties** $P(F, C)$

- **(1) Clause Elimination**: iteratively remove $C \in F$ s.t. $P(F, C)$
	- \triangleright Subsumption, blocked clauses, covered clauses (see [\[6\]](#page-50-1))
	- \triangleright Strong preprocessing, inprocessing techniques
- **(2) Proof systems**: add $C \notin F$ such that $P(F, C)$, eventually add ⊥
	- ▶ (Resolution), DRAT [\[16\]](#page-53-0), SPR, PR (Propagation Redundancy)
	- **PR** has simple, short proofs of **pigeonhole formulas** [\[7\]](#page-51-0) (shortest res. proofs are exponential in size [\[3\]](#page-49-0))

 \blacktriangleright Efficiently decidable **redundancy properties** $P(F, C)$

- **(1) Clause Elimination**: iteratively remove $C \in F$ s.t. $P(F, C)$
	- \triangleright Subsumption, blocked clauses, covered clauses (see [\[6\]](#page-50-1))
	- \triangleright Strong preprocessing, inprocessing techniques
- **(2) Proof systems**: add $C \notin F$ such that $P(F, C)$, eventually add ⊥
	- ▶ (Resolution), DRAT [\[16\]](#page-53-0), SPR, PR (Propagation Redundancy)
	- **PR** has simple, short proofs of **pigeonhole formulas** [\[7\]](#page-51-0) (shortest res. proofs are exponential in size [\[3\]](#page-49-0))
	- **∗** Strong even without extension (new variables), deletion
	- **∗** Seem to be somewhat "automatizable"

Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

HKB [\[7\]](#page-51-0): C is redundant w.r.t. $F \iff$ for $\alpha = \neg C$, there exists ω : (1) $\omega \in C$ (2) **F|***^α* **F|***^ω*

 \blacktriangleright *ω* is a **witness** for C

Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

HKB [\[7\]](#page-51-0): C is redundant w.r.t. $F \iff$ for $\alpha = \neg C$, there exists ω : (1) $\omega \in \mathbb{C}$ (2) **F|***^α* **F|***^ω*

Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

Clause elimination: witnesses needed for **reconstruction** [\[4\]](#page-50-2)

- **If** Remove redundant clauses C_1 , C_2 , ..., C_M from F
- Solution τ for $F \setminus \{C_1, \ldots, C_N\}$ may not satisfy F
- Record witness ω_i for each C_i , apply **reconstruction function**

$$
\mathcal{R}_{\epsilon}(\tau) = \tau \qquad \qquad \mathcal{R}_{\sigma \cdot (\omega : C)}(\tau) = \begin{cases} \mathcal{R}_{\sigma}(\tau) & \text{if } \tau \models C \\ \mathcal{R}_{\sigma}(\tau \circ \omega) & \text{otherwise} \end{cases}
$$

Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

Clause elimination: witnesses needed for **reconstruction** [\[4\]](#page-50-2)

- **I** Remove redundant clauses C_1 , C_2 , ..., C_N from F
- Solution τ for $F \setminus \{C_1, \ldots, C_N\}$ may not satisfy F
- Record witness ω_i for each C_i , apply **reconstruction function**

$$
\mathcal{R}_{\epsilon}(\tau) = \tau \qquad \qquad \mathcal{R}_{\sigma \cdot (\omega : C)}(\tau) = \begin{cases} \mathcal{R}_{\sigma}(\tau) & \text{if } \tau \vDash C \\ \mathcal{R}_{\sigma}(\tau \circ \omega) & \text{otherwise} \end{cases}
$$

Witnesses crucial for PR proofs as well

C is PR w.r.t. F if $F|_{\alpha} \vdash_1 F|_{\omega}$ for some $\omega \models C$

- \triangleright Deciding if C is PR w.r.t. F is NP-complete [\[10\]](#page-51-2)
- \blacktriangleright Must record witness for each added C for polynomial proof check

Background Witnesses [\[7,](#page-51-0) [9\]](#page-51-1)

 \blacktriangleright $F|_{\alpha}$ \vdash ₁ ⊥ means unit propagation on $F|_{\alpha}$ produces ⊥

 \blacktriangleright $F|_{\alpha}$ $\vdash_1 F|_{\omega}$ means $F|_{\alpha}$ ∧ ¬D $\vdash_1 \bot$ for every D ∈ $F|_{\omega}$

Definition [\[5,](#page-50-0) [6\]](#page-50-1)

 \triangleright Consider the resolvents of $C = (a \vee b)$ on a:

$C \otimes_a (D \vee \neg a)$ for all $(D \vee \neg a) \in F$

All resolvents tautological **⇒** a blocks C All non-taut. resolvents include $x \Rightarrow a$ **covers** x

 \triangleright Extend C by adding covered literals: $C_{ext} = (a \vee b \vee x)$

 $(F \wedge C_{ext})|_{\neg a, \neg b}$ \vdash_1 $(F \wedge C_{ext})|_{a, \neg b}$

 \triangleright *C* is redundant w.r.t. *F* ∧ *C*_{ext}, with witness $ω = a, ∎b$

Iteratively add covered literals to C_{ext}

C is **covered** if some extension C_{ext} is blocked, or subsumed.

Example

Example

▶ Reconstruction for CC-Elimination: use the sequence of witnesses

Example

 \blacktriangleright Reconstruction for CC-Elimination: use the sequence of witnesses

Example

(1) a covers x	$(a \lor b)$	$\omega_1 = a, \neg b$
(2) b covers y	$(a \lor b \lor x)$	$\omega_2 = \neg a, b, \neg x$
(3) C _{ext} blocked by x	$(a \lor b \lor x \lor y)$	$\omega_3 = \neg a, \neg b, x, \neg y$
(4) $(a \lor b)$ is covered	\top	

▶ Reconstruction for CC-Elimination: use the sequence of witnesses

$$
(\omega_3: a \vee b \vee x \vee y)
$$

$$
(\omega_2: a \vee b \vee x)
$$

$$
(\omega_1: a \vee b)
$$

- \triangleright Actually identify asymmetric covered clauses [\[6\]](#page-50-1)
- \triangleright Can extend C by both covered and **asymmetric** literals ℓ :

 $(D ∨ ¬ℓ) ∈ F$ for some $D ⊆ C$

- \triangleright Actually identify asymmetric covered clauses [\[6\]](#page-50-1)
- \triangleright Can extend C by both covered and **asymmetric** literals ℓ :

 $(D \vee \neg \ell) \in F$ for some $D \subseteq C$

- \blacktriangleright Adding asymmetric literals is equivalence-preserving
- \triangleright ACC is strictly more general than CC

 $ACC(F, C)$ $\sigma := \varepsilon$ $\mathbf{1}$ $E := C$ \mathfrak{D} $\alpha := \neg C$ \mathbf{R} $\overline{4}$ repeat if $\perp \in F|_{\alpha}$ then return (true, σ) 5 if there are unit clauses in $F|_{\alpha}$ then 6 $\alpha := \alpha \cup \{u\}$ for each unit u $\overline{7}$ else 8 9 for each $l \in E$ $G := \{ D |_{\alpha} \mid (D \vee \neg l) \in F \text{ and } D |_{\alpha} \neq \top \}$ 10 if $G = \emptyset$ then return (true, $\sigma \cdot (\neg E_l : E)$) 11 $\Phi := \bigcap G$ 12 if $\Phi \neq \emptyset$ then 13 $\sigma := \sigma \cdot (\neg E_l : E)$ 14 $E := E \cup \Phi$ 15 $\alpha := \alpha \cup \neg \Phi$ 16 until no updates to α 17 return (false, ε) 18

 $ACC(F, C)$ $\sigma := \varepsilon$ witness sequence $\mathbf{1}$ $E := C$ C with covered literals \mathfrak{D} $\alpha := \neg C$ C with all added literals (negated) $\overline{\mathbf{3}}$ repeat $\overline{4}$ Subsumption if $\perp \in F|_{\alpha}$ then return (true, σ) 5 Check **if** there are unit clauses in $F|_{\alpha}$ then 6 Add all asymmetric literals $\alpha := \alpha \cup \{u\}$ for each unit u $\overline{7}$ else 8 9 for each $l \in E$ 10 $G := \{ D |_{\alpha} \mid (D \vee \neg l) \in F \text{ and } D |_{\alpha} \neq \top \}$ 11 if $G = \emptyset$ then return (true, $\sigma \cdot (\neg E_l : E)$) **Blocking** $\Phi := \bigcap G$ 12 Check on Record to if $\Phi \neq \emptyset$ then 13 witness seg. $\sigma := \sigma \cdot (\neg E_l : E)$ 14 $E := E \cup \Phi$ 15 Add all literals covered by l $\alpha := \alpha \cup \neg \varPhi$ 16 until no updates to α 17 return (false, ε) 18

 \triangleright Witness sequence can be quadratic in the size of C_{ext}

$$
|\omega_n| + \cdots + |\omega_1|
$$

 \triangleright Witness sequence can be quadratic in the size of C_{ext}

$$
|\mathcal{C}_{ext}|+\cdots+|\mathcal{C}|
$$

 \triangleright Witness sequence can be quadratic in the size of C_{ext}

$$
|\mathcal{C}_{ext}|+\cdots+|\mathcal{C}|
$$

- I C is covered in F **⇒** C is redundant w.r.t. F
- **IFTARE**: C has a single witness ω . Can we compute it?

 \triangleright Witness sequence can be quadratic in the size of C_{ext}

$$
|\mathcal{C}_{ext}|+\cdots+|\mathcal{C}|
$$

- \triangleright C is covered in F \Rightarrow C is redundant w.r.t. F
- **IFTARE**: C has a single witness ω . Can we compute it?

Thm. Computing *ω* can be as hard as finding satisfying assignments.

Thm. Computing *ω* can be as hard as finding satisfying assignments.

 \triangleright Proof sketch: Take any CNF formula G. Let $C = (a \lor b)$

Thm. Computing *ω* can be as hard as finding satisfying assignments.

- \triangleright Proof sketch: Take any CNF formula G. Let $C = (a \lor b)$
- **►** Define $F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)$, and

Thm. Computing *ω* can be as hard as finding satisfying assignments.

 \triangleright Proof sketch: Take any CNF formula G. Let $C = (a \lor b)$

$$
\blacktriangleright \text{ Define } F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land \mathcal{S}(G, x, y), \text{ and }
$$

$$
\mathcal{S}(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

where $G' = \bigwedge D'$ is a variable-renamed copy of G. D∈G

Thm. Computing *ω* can be as hard as finding satisfying assignments.

 \triangleright Proof sketch: Take any CNF formula G. Let $C = (a \vee b)$

$$
\blacktriangleright \text{ Define } F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land \mathcal{S}(G, x, y), \text{ and}
$$

$$
\mathcal{S}(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

where $G' = \bigwedge D'$ is a variable-renamed copy of G. D∈G

 \triangleright *C* is covered: $(a \vee b) \rightarrow (a \vee b \vee x) \rightarrow (a \vee b \vee x \vee y) \rightarrow \top$

$$
C = (a \lor b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

$$
C = (a \lor b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

i G is satisfiable \iff any ω for C includes a solution for G or G'

$$
C = (a \lor b)
$$

\n
$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

\n
$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

i G is satisfiable \iff any ω for C includes a solution for G or G'

$$
F|_{\alpha} = (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
C = (a \lor b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

i G is satisfiable \iff any ω for C includes a solution for G or G'

$$
F|_{\alpha} = (\neg x \lor \neg y) \land S(G, x, y)
$$

If $a \in \omega$ then $(\neg a \lor x)|_{\omega} = (x) \in F|_{\omega} \implies x \in \omega$ as well If $x \in \omega$ then $\neg y \in \omega$, and ω satisfies G'

$$
C = (a \lor b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

i G is satisfiable \iff any ω for C includes a solution for G or G'

$$
F|_{\alpha} = (\neg x \lor \neg y) \land S(G, x, y)
$$

 \blacktriangleright If $a \in \omega$ then $(\neg a \lor x)|_{\omega} = (x) \in F|_{\omega} \implies x \in \omega$ as well

- If $x \in \omega$ then $\neg y \in \omega$, and ω satisfies G'
- If $b \in \omega$ then ω satisfies G

Covered Clauses are not PR

Cor. Not all covered clauses are PR

Same set up as before:

$$
C = (a \lor b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

Covered Clauses are not PR

Cor. Not all covered clauses are PR

Same set up as before:

$$
C=(a\vee b)
$$

$$
F = (\neg a \lor x) \land (\neg b \lor y) \land (\neg x \lor \neg y) \land S(G, x, y)
$$

$$
S(G, x, y) = \bigwedge_{D \in G} (x \lor D) \bigwedge_{D' \in G'} (y \lor D')
$$

I Take $G = (c \lor d) \land (\neg c \lor d) \land (c \lor \neg d) \land (\neg c \lor \neg d)$

 \triangleright No *ω* for *C* satisfies $F|_α$ $\vdash_1 F|_ω$

Deciding PR vs. R

 \triangleright Deciding whether a clause is PR is NP-complete [\[10\]](#page-51-2)

 \triangleright Main goal: find useful PR clauses while solving

- ▶ SDCL [\[8\]](#page-51-3) use **reducts** to detect PR clauses
	- \triangleright Small propositional formulas (ideally easy to solve)
	- \triangleright (Un-)satisfiable reduct \Rightarrow C is (not) PR w.r.t. F

Deciding PR vs. R

 \triangleright Deciding whether a clause is PR is NP-complete [\[10\]](#page-51-2)

 \triangleright Main goal: find useful PR clauses while solving

- ▶ SDCL [\[8\]](#page-51-3) use **reducts** to detect PR clauses
	- \triangleright Small propositional formulas (ideally easy to solve)
	- \triangleright (Un-)satisfiable reduct \Rightarrow C is (not) PR w.r.t. F

 \triangleright Can we detect **R** clauses the same way?

Difference Polynomial Time

Difference Polynomial Time or **DP** [\[15\]](#page-53-1) is the class:

 $DP = \{L_1 \setminus L_2 \mid L_1, L_2 \in NP\}$

▶ Defined to classify various "exact" or "critical problems"

 \blacktriangleright Ex: can a graph G be colored using exactly four colors?

$$
\mathsf{NP},\mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{DP} \subseteq \Theta^{\mathsf{P}}_2 = \mathsf{P}^{\mathsf{NP}[\mathcal{O}(\mathsf{log})]}
$$

F Second-level of the **Boolean hierarchy** over NP [\[1\]](#page-49-2)

 $▶$ BH collapse \Rightarrow PH collapse [\[11\]](#page-52-3)

Thm. Deciding R is co-DP-complete

▶ Proof sketch: show complement is complete for DP

 $(F, C) \in \overline{R}$ if C is not redundant w.r.t. F

Thm. Deciding R is co-DP-complete

▶ Proof sketch: show complement is complete for DP

 $(F, C) \in \overline{R}$ if C is not redundant w.r.t. F

$$
\begin{aligned} \blacktriangleright \overline{\mathsf{R}} &= \{ (F, C) \mid F \text{ is SAT but } F \land C \text{ is UNSAT} \} \\ &= \{ (F, C) \mid F \in \mathsf{SAT} \} \setminus \{ (F, C) \mid F \land C \in \mathsf{SAT} \} \\ &\in \mathsf{DP} \end{aligned}
$$

Thm. Deciding R is co-DP-complete

- ▶ Reduction from SAT-UNSAT: (F, G) s.t. F is SAT, G is UNSAT
- Given F and G, let $C' = x$ and construct:

$$
F' = \bigwedge_{C \in F} (C \vee x) \bigwedge_{D \in G} (D \vee \neg x)
$$

Thm. Deciding R is co-DP-complete

- ▶ Reduction from SAT-UNSAT: (F, G) s.t. F is SAT, G is UNSAT
- Given F and G, let $C' = x$ and construct:

$$
F' = \bigwedge_{C \in F} (C \vee x) \bigwedge_{D \in G} (D \vee \neg x)
$$

► C' is not redundant w.r.t. $F' \iff (F, G) \in SAT$ -UNSAT Notice:

$$
F'|_{x} = \bigwedge_{D \in G} (D) = G
$$

$$
F'|_{\neg x} = \bigwedge_{C \in F} (C) = F
$$

Conclusion

- **Presented algorithm to identify ACCs**
- ▶ Proved witnesses for CCs are hard to compute
- ▶ Showed PR does not generalize CC
- ▶ Deciding clause redundancy is co-DP-complete

Conclusion

- \triangleright Presented algorithm to identify ACCs
- ▶ Proved witnesses for CCs are hard to compute
- ▶ Showed PR does not generalize CC
- ▶ Deciding clause redundancy is co-DP-complete

∗ Future work: different witness structures, non-clausal redundancy

Conclusion

- \triangleright Presented algorithm to identify ACCs
- ▶ Proved witnesses for CCs are hard to compute
- ▶ Showed PR does not generalize CC
- ▶ Deciding clause redundancy is co-DP-complete

∗ Future work: different witness structures, non-clausal redundancy

Thanks!

References I

Jin-Yi Cai and Lane Hemachandra.

The Boolean hierarchy: hardware over NP.

In Structure in complexity theory, volume 223 of LNCS, pages 105–124. Springer, 1986.

Evgueni Goldberg and Yakov Novikov.

Verification of proofs of unsatisfiability for CNF formulas. In Proceedings of the Conference on Design, Automation and Test in Europe - Volume 1, DATE '03, page 10886, USA, 2003. IEEE Computer Society.

Armin Haken.

The intractability of resolution.

Theoretical Computer Science, 39:297 – 308, 1985.

Third Conference on Foundations of Software Technology and Theoretical Computer Science.

References II

Marijn J. H. Heule, Matti Järvisalo, and Armin Biere.

Clause elimination procedures for CNF formulas.

In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning – LPAR 17, volume 6397 of LNCS, pages 357–371. Springer, 2010.

Mariin J. H. Heule, Matti Järvisalo, and Armin Biere.

Covered clause elimination.

In Andrei Voronkov, Geoff Sutcliffe, Matthias Baaz, and Christian Fermüller, editors, Logic for Programming, Artificial Intelligence and Reasoning – LPAR 2013 (Short), volume 13 of EPiC Series in Computing, pages 41-46. EasyChair, 2013.

Marijn J. H. Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere.

Clause elimination for SAT and QSAT.

Journal of Artificial Intelligence Research, 53(1):127–168, 2015.

References III

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.

Short proofs without new variables.

In Leonardo de Moura, editor, Automated Deduction – CADE 26, volume 10395 of LNCS, pages 130–147. Springer, 2017.

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.

Encoding redundancy for satisfaction-driven clause learning.

In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference – TACAS 2019, volume 11427 of LNCS, pages 41–58. Springer, 2019.

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.

Strong extension-free proof systems.

Journal of Automated Reasoning, 64:533–554, 2020.

Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. PRuning through satisfaction. In Ofer Strichman and Rachel Tzoref-Brill, editors, Haifa Verification Conference – HVC 2017, volume 10629 of LNCS, pages 179–194. Springer, 2017.

References IV

Jim Kadin.

The polynomial time hierarchy collapses if the boolean hierarchy collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.

Benjamin Kiesl, Marijn J. H. Heule, and Armin Biere.

Truth assignments as conditional autarkies.

In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated Technology for Verification and Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture Notes in Computer Science, pages 48–64. Springer, 2019.

Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere.

Super-blocked clauses.

In Nicola Olivetti and Ashish Tiwari, editors, International Joint Conference on Automated Reasoning – IJCAR 2016, volume 9706 of LNCS, pages 45–61. Springer, 2016.

Oliver Kullmann.

On a generalization of xended resolution. Discrete Appl. Math., 96/97:149–176, 1999.

References V

Christos Papadimitriou and Mihalis Yannakakis.

The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt.

DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and applications of satisfiability testing – SAT 2014, volume 8561 of LNCI, pages 422–429. Springer, 2014.