
Non-Clausal Redundancy Properties

Lee A. Barnett Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University

July 12, 2021

Motivation

I SAT solvers are used where correctness matters
I Verifying hardware and software [CBRZ01, GPB01, KSHK07]
I Subroutines in other reasoning tools [BSST21, Vor14]
I Search for solutions to math problems [HKM16, KL15]

I Solvers should produce externally-checkable certificates
I Example: if F is UNSAT, produce a resolution refutation

I Most modern proof systems infer redundant clauses

Clause C is redundant w.r.t. formula F if F ≡SAT F ∧ C

I Examples: RUP [GN03], RAT [WHH14], PR [HKB17], . . .

2 / 21

Motivation

I PR has short refutations for many hard problems (see [BT19])
I Problems with no polynomial-length resolution refutation

I CDCL searches for resolution refutations [BKS04]
I PR presents the potential for major speed-ups in solving

I Not obvious how to exploit this in practice (but see SDCL [HKB19])
I Established techniques already offer speed-up beyond CDCL

--gauss --no-gauss
urquhart s5 b3 0.1 sec > 10 hrs

I Clausal proof systems struggle to express non-clausal reasoning
I Typically disable XOR, cardinality reasoning if proofs required

∗ Want proofs that express these techniques as well

3 / 21

A hard problem

I Graph G , each v has a charge γ(v) ∈ {0, 1}, total charge is odd
I Variable xe for each edge e in G
I Formula FG,γ : for each v , parity of the incident xe equals γ(v)

I For certain graphs, no short resolution proofs [Tse70, Urq95]
I Tseitin formulas have short DRAT, (D)PR proofs [BT19, HKB19]

4 / 21

Redundancy Properties

P(F ,C)⇒ C is redundant w.r.t. F

RUP unit propagation on F ∧ ¬C produces conflict: F `1 C
RAT for some ` ∈ C the clause C ∨ D is RUP for all D ∨ ¬` ∈ F
PR for some assignment ω, both C |ω = > and F |¬C `1 F |ω

I Add clauses to F that meet the redundancy property
I Prove “UNSAT” by eventually adding the empty clause ⊥
I Deciding whether a clause is PR is NP-complete [HKSB17]

5 / 21

XOR Reasoning

I Can Tseitin formulas be solved without looking for PR clauses?
I CryptoMiniSAT [SNC09], Lingeling [Bie18], . . . use XOR reasoning

x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x4 ⊕ x5 = 0
x2 ⊕ x4 ⊕ x6 = 0
x3 ⊕ x5 ⊕ x6 = 0

I Extract XOR constraints, solve efficiently with Gaussian elimination
I But expressing this is a challenge for RUP, RAT, PR, ...
I Not just XORs. Example: reasoning about cardinality

6 / 21

Non-clausal Redundancy

Function g is redundant w.r.t. function f if f ≡SAT f ∧ g

Want non-clausal redundancy properties, proof systems
I Efficiently-checkable
I Easily express existing solver techniques
I Extend existing proof systems

7 / 21

8 / 21

Binary Decision Diagrams

I BDDs [Ake78, Bry86, Lee59] compactly express Boolean functions
I Long history in SAT (e.g. [BH21, DK03, FKS+04, MM02, PV04])

I Shannon decomposition

f = (¬x ∧ f |¬x) ∨ (x ∧ f |x)

I a + b + c ≥ 2
I Clauses are easy to represent
I Formulas in general are not
I Conjunction of BDDs:

F = f1 ∧ · · · ∧ fn

9 / 21

Redundancy for BDDs

I x1 ⊕ x2 = 1 is redundant w.r.t. F ⇐⇒ not all F -solutions are in α

I Want a function F |α such that
I If assignment τ is in α then F |α(τ) = F (τ)
I F |α is simpler than F

I A generalized cofactor of F by x1 ⊕ x2 = 0

10 / 21

Generalized Cofactor

I Can compute f |g using constrain operation [CM90, TSL+90]

Constrain(f , g), for g 6= 0, produces the BDD f ◦ πg , with πg given by

πg (τ) =


τ if g(τ) = 1

arg min
{τ ′ | g(τ ′)=1}

d(τ, τ ′) otherwise

where d(τ, τ ′) =
n∑

i=1
|τ(xi)− τ ′(xi)| · 2n−i for variables x1 ≺ · · · ≺ xn.

I Usually smaller than f and can be computed efficiently
I Distributes over ∧, so (f1 ∧ · · · ∧ fn)|g = f1|g ∧ · · · ∧ fn|g

11 / 21

Redundancy for BDDs
Can characterize redundancy as follows:

A BDD g is redundant w.r.t. f1 ∧ · · · ∧ fn iff there exists ω = `1 ∧ · · · ∧ `k :
1. g |ω is the “always-true” BDD 1
2. f1|¬g ∧ · · · ∧ fn|¬g � f1|ω ∧ · · · ∧ fn|ω

I Compare with the following characterization for clauses [HKB20]

A clause C is redundant w.r.t. formula F iff there exists an assignment ω:
1. ω satisfies C

2. F |¬C � F |ω

I Can check redundancy by checking this implication
I Make this efficient by using a restricted implication relation
I For clause redundancy properties, use RUP

12 / 21

BDD Unit Propagation

I U(f) = set of literals implied by the BDD f
I Propagates these implied literals through the collection
I If UnitProp(f1|¬g , . . . , fn|¬g) = “conflict” then f1 ∧ · · · ∧ fn � g

13 / 21

Reverse UnitProp Example

14 / 21

Redundancy Properties for BDDs

A BDD g is RUPBDD w.r.t f1 ∧ · · · ∧ fn if
∗ UnitProp(f1|¬g , . . . , fn|¬g) = “conflict”, or
∗ UnitProp(f1|p, . . . , fn|p) = “conflict” for each 0-path p in g (RUPpath)

I Efficiently decidable, generalizes clausal RUP

A BDD g is PRBDD w.r.t f1 ∧ · · · ∧ fn if for some ω
∗ g |ω = 1, and
∗ for all 1 ≤ i ≤ n either fi |ω = 1 or fi |ω is RUPBDD

I Efficiently checkable, given ω
I Generalizes clausal PR property

15 / 21

Gaussian Elimination with RUPBDD

x1 ⊕ x2 ⊕ x3 = 1

I If f1 ∧ · · · ∧ fn includes the CNF
of an XOR, the BDD is RUPpath

16 / 21

Gaussian Elimination with RUPBDD

p = x1 ∧ ¬x2 ∧ x3

I If f1 ∧ · · · ∧ fn includes the CNF
of an XOR, the BDD is RUPpath

17 / 21

Gaussian Elimination with RUPBDD

I From constraints X and Y , want to infer X ⊕ Y

1⊕ 2⊕ 3 = 1
1⊕ 4⊕ 5 = 0

2⊕ 3⊕ 4⊕ 5 = 1

I We show X |¬(X⊕Y) = ¬Y |¬(X⊕Y), so X ⊕ Y is RUPBDD
I Proof system using RUPBDD or PRBDD

I Easily expresses Gaussian elimination steps
I Extends corresponding clausal property

18 / 21

Results
I dxddcheck: prototype implementation in Python
I Checks proofs in this subsystem capturing Gaussian elim.

I Allows clause and XOR addition

I Proofs can be extracted from Lingeling output
I dxddcheck checks that the XOR constraint is redundant

19 / 21

Results

I urquhart benchmarks: Tseitin formulas
I With Gaussian elim, Lingeling solves all almost instantly
I Without Gaussian elim, Lingeling and Kissat timeout

I Only rpar 50 was solved in < 10 hours
I Proof in this case was ≈ 6911 MB

20 / 21

Conclusion

I Generalized redundancy beyond clauses
I Define properties, proof systems based on redundant BDDs
I Proof systems easily express Gaussian elimination
I Prototype results confirm this approach is practical

Future work: cardinality reasoning, (certified) PRBDD proof checker

21 / 21

References I

Sheldon B. Akers.
Binary decision diagrams.
IEEE Trans. Computers, 27(6):509–516, 1978.

Randal E. Bryant and Marijn J. H. Heule.
Generating extended resolution proofs with a BDD-based SAT solver.
In Jan Friso Groote and Kim Guldstrand Larsen, editors, 27th Intl. Conference on
Tools and Algorithms for the Construction and Analysis of Systems – TACAS,
volume 12651 of LNCS, pages 76–93. Springer, 2021.

Armin Biere.
CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT
competition 2018.
In Marijn J. H. Heule, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT
Competition 2018, Department of Computer Science Series of Publications B,
pages 13–14. University of Helsinki, 2018.

21 / 21

References II

Paul Beame, Henry Kautz, and Ashish Sabharwal.
Towards understanding and harnessing the potential of clause learning.
Journal of Artificial Intelligence Research, 22(1):319–351, 2004.

Randal E. Bryant.
Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, pages 1267–1329. IOS Press, 2021.

Sam Buss and Neil Thapen.
DRAT proofs, propagation redundancy, and extended resolution.
In Mikoláš Janota and Inês Lynce, editors, 22nd Intl. Conference on Theory and
Applications of Satisfiability Testing – SAT, volume 11628 of LNCS, pages 71–89.
Springer, 2019.

21 / 21

References III
Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving.
Formal Methods in System Design, 19(1):7–34, 2001.

Olivier Coudert and Jean Christophe Madre.
A unified framework for the formal verification of sequential circuits.
In IEEE Intl. Conference on Computer-Aided Design – ICCAD, pages 126–129.
IEEE Computer Society, 1990.

Robert F. Damiano and James H. Kukula.
Checking satisfiability of a conjunction of BDDs.
In 40th Design Automation Conference – DAC, pages 818–823. ACM, 2003.

John Franco, Michal Kouril, John Schlipf, Jeffrey Ward, Sean Weaver, Michael
Dransfield, and W. Mark Vanfleet.
SBSAT: a state-based, BDD-based satisfiability solver.
In Enrico Giunchiglia and Armando Tacchella, editors, 6th Intl. Conference on
Theory and Applications of Satisfiability Testing – SAT, volume 2919 of LNCS,
pages 398–410. Springer, 2004.

21 / 21

References IV
Evguenii I. Goldberg and Yakov Novikov.
Verification of proofs of unsatisfiability for CNF formulas.
In Conference on Design, Automation and Test in Europe– DATE, pages 886–891.
IEEE Computer Society, 2003.

Evguenii I. Goldberg, Mukul R. Prasad, and Robert K. Brayton.
Using SAT for combinational equivalence checking.
In Wolfgang Nebel and Ahmed Jerraya, editors, Conference on Design, Automation
and Test in Europe – DATE, pages 114–121. IEEE Computer Society, 2001.

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Short proofs without new variables.
In Leonardo de Moura, editor, 26th Intl. Conference on Automated Deduction –
CADE, volume 10395 of LNCS, pages 130–147. Springer, 2017.

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Encoding redundancy for satisfaction-driven clause learning.
In Tomás Vojnar and Lijun Zhang, editors, 25th Intl. Conference on Tools and
Algorithms for the Construction and Analysis of Systems – TACAS, volume 11427
of LNCS, pages 41–58. Springer, 2019.

21 / 21

References V
Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Strong extension-free proof systems.
Journal of Automated Reasoning, 64(3):533–554, 2020.

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek.
Solving and verifying the Boolean Pythagorean triples problem via
cube-and-conquer.
In Nadia Creignou and Daniel Le Berre, editors, 19th Intl. Conference on Theory
and Applications of Satisfiability Testing – SAT, volume 9710 of LNCS, pages
228–245. Springer, 2016.

Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere.
PRuning through satisfaction.
In Ofer Strichman and Rachel Tzoref-Brill, editors, 13th Intl. Haifa Verification
Conference – HVC, volume 10629 of LNCS, pages 179–194. Springer, 2017.

Boris Konev and Alexei Lisitsa.
Computer-aided proof of Erdős discrepancy properties.
Artificial Intelligence, 224:103–118, 2015.

21 / 21

References VI
Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasidashvili.
Industrial strength SAT-based alignability algorithm for hardware equivalence
verification.
In 7th Intl. Conference on Formal Methods in Computer Aided Design – FMCAD,
pages 20–26. IEEE Computer Society, 2007.

C. Y. Lee.
Representation of switching circuits by binary-decision programs.
The Bell System Technical Journal, 38(4):985–999, 1959.

DoRon B. Motter and Igor L. Markov.
A compressed breadth-first search for satisfiability.
In David M. Mount and Clifford Stein, editors, 4th Intl. Workshop on Algorithm
Engineering and Experiments – ALENEX, volume 2409 of LNCS, pages 29–42.
Springer, 2002.

Guoqiang Pan and Moshe Y. Vardi.
Search vs. symbolic techniques in satisfiability solving.
In 7th Intl. Conference on Theory and Applications of Satisfiability Testing – SAT,
volume 3542 of LNCS, pages 235–250. Springer, 2004.

21 / 21

References VII
Mate Soos, Karsten Nohl, and Claude Castelluccia.
Extending SAT solvers to cryptographic problems.
In Oliver Kullmann, editor, 12th Intl. Conference on Theory and Applications of
Satisfiability Testing – SAT, LNCS, pages 244–257. Springer, 2009.

Grigorii Samuilovich Tseitin.
On the complexity of derivation in propositional calculus.
In Anatolii Olesevich Slissenko, editor, Studies in Constructive Mathematics and
Mathematical Logic, volume 2, pages 115–125. Steklov Mathematical Institute,
1970.

Hervé J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli.
Implicit state enumeration of finite state machines using BDDs.
In IEEE Intl. Conference on Computer-Aided Design – ICCAD, pages 130–133.
IEEE Computer Society, 1990.

Alasdair Urquhart.
The complexity of propositional proofs.
Bulletin of Symbolic Logic, 1(4):425–467, 12 1995.

21 / 21

References VIII

Andrei Voronkov.
AVATAR: The architecture for first-order theorem provers.
In Armin Biere and Roderick Bloem, editors, 26th Intl. Conference on Computer
Aided Verification – CAV, volume 8559 of LNCS, pages 696–710. Springer, 2014.

Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt.
DRAT-trim: Efficient checking and trimming using expressive clausal proofs.
In Carsten Sinz and Uwe Egly, editors, 17th Intl. Conference on Theory and
Applications of Satisfiability Testing – SAT, volume 8561 of LNCS, pages 422–429.
Springer, 2014.

21 / 21

