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Motivation

I SAT solvers are used where correctness matters
I Verifying hardware and software [CBRZ01, GPB01, KSHK07]
I Subroutines in other reasoning tools [BSST21, Vor14]
I Search for solutions to math problems [HKM16, KL15]

I Solvers should produce externally-checkable certificates
I Example: if F is UNSAT, produce a resolution refutation

I Most modern proof systems infer redundant clauses

Clause C is redundant w.r.t. formula F if F ≡SAT F ∧ C

I Examples: RUP [GN03], RAT [WHH14], PR [HKB17], . . .
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Motivation

I PR has short refutations for many hard problems (see [BT19])
I Problems with no polynomial-length resolution refutation

I CDCL searches for resolution refutations [BKS04]
I PR presents the potential for major speed-ups in solving

I Not obvious how to exploit this in practice (but see SDCL [HKB19])
I Established techniques already offer speed-up beyond CDCL

--gauss --no-gauss
urquhart s5 b3 0.1 sec > 10 hrs

I Clausal proof systems struggle to express non-clausal reasoning
I Typically disable XOR, cardinality reasoning if proofs required

∗ Want proofs that express these techniques as well
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A hard problem

I Graph G , each v has a charge γ(v) ∈ {0, 1}, total charge is odd
I Variable xe for each edge e in G
I Formula FG,γ : for each v , parity of the incident xe equals γ(v)

I For certain graphs, no short resolution proofs [Tse70, Urq95]
I Tseitin formulas have short DRAT, (D)PR proofs [BT19, HKB19]
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Redundancy Properties

P(F ,C)⇒ C is redundant w.r.t. F

RUP unit propagation on F ∧ ¬C produces conflict: F `1 C
RAT for some ` ∈ C the clause C ∨ D is RUP for all D ∨ ¬` ∈ F
PR for some assignment ω, both C |ω = > and F |¬C `1 F |ω

I Add clauses to F that meet the redundancy property
I Prove “UNSAT” by eventually adding the empty clause ⊥
I Deciding whether a clause is PR is NP-complete [HKSB17]
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XOR Reasoning

I Can Tseitin formulas be solved without looking for PR clauses?
I CryptoMiniSAT [SNC09], Lingeling [Bie18], . . . use XOR reasoning

x1 ⊕ x2 ⊕ x3 = 1
x1 ⊕ x4 ⊕ x5 = 0
x2 ⊕ x4 ⊕ x6 = 0
x3 ⊕ x5 ⊕ x6 = 0

I Extract XOR constraints, solve efficiently with Gaussian elimination
I But expressing this is a challenge for RUP, RAT, PR, ...
I Not just XORs. Example: reasoning about cardinality
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Non-clausal Redundancy

Function g is redundant w.r.t. function f if f ≡SAT f ∧ g

Want non-clausal redundancy properties, proof systems
I Efficiently-checkable
I Easily express existing solver techniques
I Extend existing proof systems
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Binary Decision Diagrams

I BDDs [Ake78, Bry86, Lee59] compactly express Boolean functions
I Long history in SAT (e.g. [BH21, DK03, FKS+04, MM02, PV04])

I Shannon decomposition

f = (¬x ∧ f |¬x ) ∨ (x ∧ f |x )

I a + b + c ≥ 2
I Clauses are easy to represent
I Formulas in general are not
I Conjunction of BDDs:

F = f1 ∧ · · · ∧ fn

9 / 21



Redundancy for BDDs

I x1 ⊕ x2 = 1 is redundant w.r.t. F ⇐⇒ not all F -solutions are in α

I Want a function F |α such that
I If assignment τ is in α then F |α(τ) = F (τ)
I F |α is simpler than F

I A generalized cofactor of F by x1 ⊕ x2 = 0
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Generalized Cofactor

I Can compute f |g using constrain operation [CM90, TSL+90]

Constrain(f , g), for g 6= 0, produces the BDD f ◦ πg , with πg given by

πg (τ) =


τ if g(τ) = 1

arg min
{τ ′ | g(τ ′)=1}

d(τ, τ ′) otherwise

where d(τ, τ ′) =
n∑

i=1
|τ(xi )− τ ′(xi )| · 2n−i for variables x1 ≺ · · · ≺ xn.

I Usually smaller than f and can be computed efficiently
I Distributes over ∧, so (f1 ∧ · · · ∧ fn)|g = f1|g ∧ · · · ∧ fn|g
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Redundancy for BDDs
Can characterize redundancy as follows:

A BDD g is redundant w.r.t. f1 ∧ · · · ∧ fn iff there exists ω = `1 ∧ · · · ∧ `k :
1. g |ω is the “always-true” BDD 1
2. f1|¬g ∧ · · · ∧ fn|¬g � f1|ω ∧ · · · ∧ fn|ω

I Compare with the following characterization for clauses [HKB20]

A clause C is redundant w.r.t. formula F iff there exists an assignment ω:
1. ω satisfies C

2. F |¬C � F |ω

I Can check redundancy by checking this implication
I Make this efficient by using a restricted implication relation
I For clause redundancy properties, use RUP
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BDD Unit Propagation

I U(f ) = set of literals implied by the BDD f
I Propagates these implied literals through the collection
I If UnitProp(f1|¬g , . . . , fn|¬g ) = “conflict” then f1 ∧ · · · ∧ fn � g
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Reverse UnitProp Example
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Redundancy Properties for BDDs

A BDD g is RUPBDD w.r.t f1 ∧ · · · ∧ fn if
∗ UnitProp(f1|¬g , . . . , fn|¬g ) = “conflict”, or
∗ UnitProp(f1|p, . . . , fn|p) = “conflict” for each 0-path p in g (RUPpath)

I Efficiently decidable, generalizes clausal RUP

A BDD g is PRBDD w.r.t f1 ∧ · · · ∧ fn if for some ω
∗ g |ω = 1, and
∗ for all 1 ≤ i ≤ n either fi |ω = 1 or fi |ω is RUPBDD

I Efficiently checkable, given ω
I Generalizes clausal PR property
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Gaussian Elimination with RUPBDD

x1 ⊕ x2 ⊕ x3 = 1

I If f1 ∧ · · · ∧ fn includes the CNF
of an XOR, the BDD is RUPpath
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Gaussian Elimination with RUPBDD

p = x1 ∧ ¬x2 ∧ x3

I If f1 ∧ · · · ∧ fn includes the CNF
of an XOR, the BDD is RUPpath
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Gaussian Elimination with RUPBDD

I From constraints X and Y , want to infer X ⊕ Y

1⊕ 2⊕ 3 = 1
1⊕ 4⊕ 5 = 0

2⊕ 3⊕ 4⊕ 5 = 1

I We show X |¬(X⊕Y ) = ¬Y |¬(X⊕Y ), so X ⊕ Y is RUPBDD
I Proof system using RUPBDD or PRBDD

I Easily expresses Gaussian elimination steps
I Extends corresponding clausal property
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Results
I dxddcheck: prototype implementation in Python
I Checks proofs in this subsystem capturing Gaussian elim.

I Allows clause and XOR addition

I Proofs can be extracted from Lingeling output
I dxddcheck checks that the XOR constraint is redundant
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Results

I urquhart benchmarks: Tseitin formulas
I With Gaussian elim, Lingeling solves all almost instantly
I Without Gaussian elim, Lingeling and Kissat timeout

I Only rpar 50 was solved in < 10 hours
I Proof in this case was ≈ 6911 MB
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Conclusion

I Generalized redundancy beyond clauses
I Define properties, proof systems based on redundant BDDs
I Proof systems easily express Gaussian elimination
I Prototype results confirm this approach is practical

Future work: cardinality reasoning, (certified) PRBDD proof checker
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